PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

Overview

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem

Installation

To install necessary python package for our work:

conda install pytorch torchvision numpy matplotlib pandas tqdm tensorboard cudatoolkit=11.1 -c pytorch -c conda-forge
pip install opencv-python tabulate moviepy openpyxl pyntcloud open3d==0.9 pytorch-lightning==1.4.9

To setup dataset for training for our work, please download:

To setup dataset for testing, please use:

  • ETH3D High-Res (PatchMatchNet pre-processed sets)
    • NOTE: We use our own script to pre-process. We are currently preparing code for the script. We will post update once it is available.
  • Tanks and Temples (MVSNet pre-processed sets)

Training

To train out method:

python bin/train.py --experiment_name=EXPERIMENT_NAME \
                    --log_path=TENSORBOARD_LOG_PATH \
                    --checkpoint_path=CHECKPOINT_PATH \
                    --dataset_path=ROOT_PATH_TO_DATA \
                    --dataset={BlendedMVS,DTU} \
                    --resume=True # if want to resume training with the same experiment_name

Testing

To test our method, we need two scripts. First script to generate geometetry, and the second script to fuse the geometry. Geometry generation code:

python bin/generate.py --experiment_name=EXPERIMENT_USED_FOR_TRAINING \
                       --checkpoint_path=CHECKPOINT_PATH \
                       --epoch_id=EPOCH_ID \
                       --num_views=NUMBER_OF_VIEWS \
                       --dataset_path=ROOT_PATH_TO_DATA \
                       --output_path=PATH_TO_OUTPUT_GEOMETRY \
                       --width=(optional)WIDTH \
                       --height=(optional)HEIGHT \
                       --dataset={ETH3DHR, TanksAndTemples} \
                       --device=DEVICE

This will generate depths / normals / images into the folder specified by --output_path. To be more precise:

OUTPUT_PATH/
    EXPERIMENT_NAME/
        CHECKPOINT_FILE_NAME/
            SCENE_NAME/
                000000_camera.pth <-- contains intrinsics / extrinsics
                000000_depth_map.pth
                000000_normal_map.pth
                000000_meta.pth <-- contains src_image ids
                ...

Once the geometries are generated, we can use the fusion code to fuse them into point cloud: GPU Fusion code:

python bin/fuse_output.py --output_path=OUTPUT_PATH_USED_IN_GENERATE.py
                          --experiment_name=EXPERIMENT_NAME \
                          --epoch_id=EPOCH_ID \
                          --dataset=DATASET \
                          # fusion related args
                          --proj_th=PROJECTION_DISTANCE_THRESHOLD \
                          --dist_th=DISTANCE_THRESHOLD \
                          --angle_th=ANGLE_THRESHOLD \
                          --num_consistent=NUM_CONSITENT_IMAGES \
                          --target_width=(Optional) target image width for fusion \
                          --target_height=(Optional) target image height for fusion \
                          --device=DEVICE \

The target width / height are useful for fusing depth / normal after upsampling.

We also provide ETH3D testing script:

python bin/evaluate_eth3d.py --eth3d_binary_path=PATH_TO_BINARY_EXE \
                             --eth3d_gt_path=PATH_TO_GT_MLP_FOLDER \
                             --output_path=PATH_TO_FOLDER_WITH_POINTCLOUDS \
                             --experiment_name=NAME_OF_EXPERIMENT \
                             --epoch_id=EPOCH_OF_CHECKPOINT_TO_LOAD (default last.ckpt)

Resources

Citation

If you want to use our work in your project, please cite:

@InProceedings{lee2021patchmatchrl,
    author    = {Lee, Jae Yong and DeGol, Joseph and Zou, Chuhang and Hoiem, Derek},
    title     = {PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    month     = {October},
    year      = {2021}
}
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022