Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Related tags

Deep LearningAquarius
Overview

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

NOTE: We are currently going through the open-source process required by our institution. The content will soon be available. The steps that need to be completed are listed below:

  • PREPARE
  • INCLUSIVELINT
  • UNITTEST
  • LINT
  • BUILD & PUBLISH
  • CORONA
  • BLACKDUCK
  • SONARQUBE
  • HELM
  • DEPLOY
  • DEPLOY-STATIC
  • E2E
  • APIDOCS
  • GOPUBLISH

Introduction

This repository implements a data-collection and data-exploitation mechanism Aquarius as a load balancer plugin in VPP. For the sake of reproducibility, software and data artifacts for performance evaluation are maintained in this repository.

Directory Roadmap

- config                    // configuration files in json format        
- sc-author-kit-log         // artifacts description of testbed hardware, required by sc21 committee
- src                       // source code
    + client/server         // scripts that run on client/server VMs
    + lb                    // scripts that run on lb VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + utils                 // utility scripts that help to run the testbed
    + vpp                   // vpp plugin
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + test                  // unit test codes
- data                      
    + trace                 // network traces replayed on the testbed
    + results (omitted)     // This is where all the datasets are dumped (will be automatically created once we run experiments)
    + img                   // VM image files (omitted here because of file size, server configurations are documented in README)
    + vpp_deb               // stores deb files for installing VPP on VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)

Get Started

Pre-Configuration

Run python3 setup.py, which does the following things:

  • update the root directory in config/global_config.json to the directory of the cloned aquarius repository (replace the /home/yzy/aquarius);
  • clone the VPP repository in src/vpp/base;
  • update the physical_server_ip in config/global_config.json to the IP addresses of the actual server IP addresses in use;
  • update the vlan_if as the last network interface on the local machine
  • update the physical_server_ip in config/cluster/unittest-1.json to the local hostname

VM images

To prepare a VM original image, refer to the README file in data. To run all the experiments without issues, create a ssh-key on the host servers and copy the public key to the VMs so that commands can be executed from the host using ssh -t -t.

Run example

A simple example is created using a small network topology (1 client, 1 edge router, 1 load balancer, and 4 application servers) on a single machine. Simply follow the jupyter notebook in notebook/unittest. Make sure the configurations are well adapted to your own host machine. Also make sure that the host machine has at least 20 CPUs. Otherwise, the configuration can be modified in config/cluster/unittest-1.json. To reduce the amount of CPUs required, change the number of vcpu of each node in the json file.

Reproducibility

To reproduce the results in Aquarius paper, three notebooks are presented in notebook/reproduce. The dataset that are generated from the experiments are stored in data/reproduce. To run these experiments, 4 physical machines with 12 physcial cores (48 CPUs) each are required. MACROs in the notebook should be well adapted. For instance, VLAN should be configured across the actual inerfacesin use. An example of network topology is depicted below.

Multi-server Topology

Notes

Running the scripts, e.g. src/utils/testbed_utils.py, requires root access.

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

You might also like...
Official code for ICCV2021 paper
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

Official PyTorch implementation of
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

Code of paper
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

AI-based, context-driven network device ranking
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

A PyTorch Implementation of
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

The AugNet Python module contains functions for the fast computation of image similarity.
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Releases(sc22-v1.0-alpha)
  • sc22-v1.0-alpha(Jun 11, 2022)

    ALPHA version of Aquarius release for SC22.

    This release aims at demonstrating the basic workflow of the artifacts of Aquarius. Besides the jupyter notebooks which documents the actual procedure of producing all the experimental results in the paper, a unittest is provided to guide you through the basic workflow of the artifact.

    Please refer to the latest main branch of the Github repo to reproduce the core results presented in the paper: https://github.com/ZhiyuanYaoJ/Aquarius

    Source code(tar.gz)
    Source code(zip)
Owner
Zhiyuan YAO
PhD student at L'Ecole Polytechnique.
Zhiyuan YAO
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022