Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

Overview

Visit QuantNet

Visit QuantNet JumpDetectR Visit QuantNet 2.0

Name of QuantLet : JumpDetectR

Published in : 'To be published as "Jump dynamics in high frequency crypto markets"'

Description : 'Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod / Li (2012) Jump tests for noisy high frequency data'

Keywords : Jumps, jump test, high frequency, time series, Ait-Sahalia, Jacod, Lee, Mykland, stochastic processes, cryptocurrencies, cryptocurrency, crypto, spectrogram, microstructure, market microstructure noise, contagion, shocks

See also : 'Lee, S.S. and Mykland, P.A. (2012) Jumps in Equilibrium Prices and Market Microstructure Noise; Ait-Sahalia, Y. and Jacod, J., Jia Li (2012) Testing for jumps in noisy high frequency data'

Authors : Danial Florian Saef, Odett Nagy

Submitted : May 7 2021 by Danial Saef

Picture1

Picture2

Picture3

Picture4

Picture5

Picture6

Picture7

Picture8

Picture9

Picture10

Picture11

Picture12

R Code

## install and load packages ##
libraries = c("data.table")
lapply(libraries, function(x) if (!(x %in% installed.packages())) {install.packages(x)} )
invisible(lapply(libraries, library, quietly = TRUE, character.only = TRUE))
## ##

#### settings ####
Sys.setenv(LANG = "en") # set environment language to English
Sys.setlocale("LC_TIME", "en_US.UTF-8") # set timestamp language to English
## ##

#### load functions #####
source("./functions/make_return_file.R", echo = F)
source("./functions/LM_JumpTest_2012.R", echo = F)
source("./functions/AJ_JumpTest_2012.R", echo = F)
source("./functions/lapply_jump_test.R", echo = F)
source("./functions/AJL_Jump_Test_2012_functions.R", echo = F)
source("./functions/AJL_Jump_Test_2012.R", echo = F)
source("./functions/jacod_preaveraging.R", echo = F)
source("./functions/AJ_09_variation.R", echo = F)
source("./functions/split_by_id.R", echo = F)
source("./functions/remove_bounceback.R", echo = F)
#### ##


### load aggregate dataset ###
DT_agg_sub <- fread("./data/raw/DT_agg_sub.csv")
## ##

#### evaluate by id ####
## split data.table ##
DT_split_noimpute <- split_by_id(DT_agg_sub, IMPUTATION = FALSE)
DT_split_impute <- split_by_id(DT_agg_sub, IMPUTATION = TRUE)
DT_agg_split_noimpute <- rbindlist(DT_split_noimpute)
DT_agg_split_impute <- rbindlist(DT_split_impute)

## get LM result ##
DT_LM_result_id <- jump_test(DT_split_noimpute, which_test = "LM_JumpTest")

## get AJL result ##
DT_AJL_result_id <- jump_test(DT_split_impute, which_test = "AJL_JumpTest")

fwrite(DT_LM_result_id, file = "./data/JumpTestResult/DT_LM_result_id.csv")
fwrite(DT_AJL_result_id, file = "./data/JumpTestResult/DT_AJL_result_id.csv")
## ##

automatically created on 2021-05-17

Owner
LvB
QuantNet Tokens for science
LvB
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022