Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Overview

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Contact [email protected] or [email protected] for questions.

Running code

Install packages

pip install -r requirements.txt 

Recommender

We use the recommenders implemented under our project for adversarial counterfactual learning published in NIPS 2020.

  • Step 1: clone the project to your local directory.

  • Step 2: pip install . to install the library.

Item features

The data ml-1m.zip is under the data folder. We need to generate the movies and users features before running the simulations.

cd data & unzip ml-1m.zip
cd ml-1m
python base_embed.py # This generates base movie and user features vector

Simulation

Assume you are in the project's main folder:

python run.py #This will runs all defined simulation routines defined in simulation.py

Optional argument:

usage: System Bandit Simulation [-h] [--dim DIM] [--topk TOPK] [--num_epochs NUM_EPOCHS] [--epsilon EPSILON] [--explore_step EXPLORE_STEP] [--feat_map {onehot,context,armed_context,onehot_context}]
                                [--algo {base,e_greedy,thomson,lin_ct,optimal}]

optional arguments:
  -h, --help            show this help message and exit
  --dim DIM
  --topk TOPK
  --num_epochs NUM_EPOCHS
  --epsilon EPSILON
  --explore_step EXPLORE_STEP
  --feat_map {onehot,context,armed_context,onehot_context}
  --algo {base,e_greedy,thomson,lin_ct,optimal}

Major class

Environment

This class implement the simulation logics described in our paper. For each user, we runs the get_epoch method, which returns an refreshed simulator based on the last interaction with the user.

Example:

float: """Return the reward given selected arm and the recommendations""" pass # Example usage BanditData = List[Tuple[int, float, Any]] data: BanditData = [] for uidx, recall_set in env.get_epoch(): arm = algo.predict() recommendations = bandit_ins.get_arm(arm).recommend(uidx, recall_set, top_k) reward = env.action(uidx, recommendations) data.append((arm, reward, None)) algo.update(data) algo.record_metric(data) ">
class Environment:
    def get_epoch(self, shuffle: bool = True):
        """Return updated environment iterator"""
        return EpochIter(self, shuffle)

    def action(self, uidx: int, recommendations: List[int]) -> float:
        """Return the reward given selected arm and the recommendations"""
        pass

# Example usage
BanditData = List[Tuple[int, float, Any]]
data: BanditData = []
for uidx, recall_set in env.get_epoch():
    arm = algo.predict()
    recommendations = bandit_ins.get_arm(arm).recommend(uidx, recall_set, top_k)
    reward = env.action(uidx, recommendations)
    data.append((arm, reward, None))
algo.update(data)
algo.record_metric(data) 

BanditAlgorithm

The BanditALgorithm implement the interfaces for any bandit algorithms evaluated in this project.

class BanditAlgorithm:
    def predict(self, *args, **kwds) -> int:
        """Return the estimated return for contextual bandit"""
        pass

    def update(self, data: BanditData):
        """Update the algorithms based on observed (action, reward, context)"""
        pass

    def record_metric(self, data: BanditData):
        """Record the cumulative performance metrics for this algorithm"""
        pass
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022