PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

Overview

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021)

PyTorch implementation of the paper:

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration by:

Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam and Slobodan Ilic.

Introduction

We study the problem of extracting correspondences between a pair of point clouds for registration. For correspondence retrieval, existing works benefit from matching sparse keypoints detected from dense points but usually struggle to guarantee their repeatability. To address this issue, we present CoFiNet - Coarse-to-Fine Network which extracts hierarchical correspondences from coarse to fine without keypoint detection. On a coarse scale and guided by a weighting scheme, our model firstly learns to match down-sampled nodes whose vicinity points share more overlap, which significantly shrinks the search space of a consecutive stage. On a finer scale, node proposals are consecutively expanded to patches that consist of groups of points together with associated descriptors. Point correspondences are then refined from the overlap areas of corresponding patches, by a density-adaptive matching module capable to deal with varying point density. Extensive evaluation of CoFiNet on both indoor and outdoor standard benchmarks shows our superiority over existing methods. Especially on 3DLoMatch where point clouds share less overlap, CoFiNet significantly outperforms state-of-the-art approaches by at least 5% on Registration Recall, with at most two-third of their parameters.

image

News

  • 28.10.2021: Paper available on arxiv.

  • 27.10.2021: Release training and testing code of 3DMatch and 3DLoMatch.

Installation

  • Clone the repository:

    git clone https://github.com/haoyu94/Coarse-to-fine-correspondences.git
    cd Coarse-to-fine-correspondences
    
  • Create conda environment and install requirements:

    conda create -n {environment name} python=3.8
    pip install -r requirements.txt
    
  • Compile C++ and CUDA scripts:

    cd cpp_wrappers
    sh compile_wrappers.sh
    cd ..
    

Demo

TBD

3DMatch & 3DLoMatch

Pretrained model

Pretrained model is given in weights/.

Prepare datasets

sh scripts/download_data.sh

Train

sh scripts/train_3dmatch.sh

Test

  • Point correspondences are first extracted by running:
sh scripts/test_3dmatch.sh

and stored on snapshot/tdmatch_enc_dec_test/3DMatch/.

  • To evaluate on 3DLoMatch, please change the benchmark keyword in configs/tdmatch/tdmatch_test.yaml from 3DMatch to 3DLoMatch.

  • The evaluation of extracted correspondences and relative poses estimated by RANSAC can be done by running:

sh scripts/run_ransac.sh
  • The final results are stored in est_traj/3DMatch/{number of correspondences}/result and the results evaluated on our computer have been provided in est_traj/.

  • To evaluate on 3DLoMatch, please change 3DMatch in scripts/run_ransac.sh to 3DLoMatch.

KITTI

TBD

Acknowledgments

The code is heavily borrowed from PREDATOR.

Our backbone network is from KPConv.

We use the Transformer implementation in SuperGlue.

Sinkhorn implementation is from SuperGlue and RPM-Net.

Citiation

TBD

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022