Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

Related tags

Deep LearningS2HAND
Overview

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning

S2HAND presents a self-supervised 3D hand reconstruction network that can jointly estimate pose, shape, texture, and the camera viewpoint. Specifically, we obtain geometric cues from the input image through easily accessible 2D detected keypoints. To learn an accurate hand reconstruction model from these noisy geometric cues, we utilize the consistency between 2D and 3D representations and propose a set of novel losses to rationalize outputs of the neural network. For the first time, we demonstrate the feasibility of training an accurate 3D hand reconstruction network without relying on manual annotations. For more details, please see our paper, video, and project page.

Code

Environment

Training is implemented with PyTorch. This code was developed under Python 3.6 and Pytorch 1.1.

Please compile the extension modules by running:

pip install tqdm tensorboardX transforms3d chumpy scikit-image

git clone https://github.com/TerenceCYJ/neural_renderer.git
cd neural_renderer
python setup.py install
rm -r neural_renderer

Note that we modified the neural_renderer/lighting.py compared to daniilidis-group/neural_renderer.

Data

For example, for 3D hand reconstruction task on the FreiHAND dataset:

  • Download the FreiHAND dataset from the website.
  • Modify the input and output directory accordingly in examples/config/FreiHAND/*.json.

For HO3D dataset:

  • Download the HO3D dataset from the website.
  • Modify the input and output directory accordingly in examples/config/HO3D/*.json.

Offline 2D Detection

  • Offline 2D keypoint detection use a off-the-shelf detector like pytorch-openpose.
    • We also provide detected 2D keypoints for FreiHAND training set. You may downlad and change the self.open_2dj_lists in the examples/data/dataset.py accordingly.

    • Or Download the hand_pose_model.pth provided by pytorch-openpose, and put the file to examples/openpose_detector/src. Then use the following script and modify the input and output directory accordingly.

      python example/openpose_detector/hand_dectect.py

Training and Evaluation

HO3D

Evaluation: download the pretrained model [texturehand_ho3d.t7], and modify the "pretrain_model" in examples/config/HO3D/evaluation.json.

cd S2HAND
python3 ./examples/train.py --config_json examples/config/HO3D/evaluation.json

Training:

Stage-wise training:

python3 ./examples/train.py --config_json examples/config/HO3D/SSL-shape.json
python3 ./examples/train.py --config_json examples/config/HO3D/SSL-kp.json
python3 ./examples/train.py --config_json examples/config/HO3D/SSL-finetune.json

Or end-to-end training:

python3 ./examples/train.py --config_json examples/config/HO3D/SSL-e2e.json

Note: remember to check and inplace the dirs and files in the *.json files.

FreiHAND

Evaluation: download the pretrained model [texturehand_freihand.t7], and modify the "pretrain_model" in examples/config/FreiHAND/evaluation.json.

cd S2HAND
python3 ./examples/train.py --config_json examples/config/FreiHAND/evaluation.json

Training: refer to HO3D traing scripts.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{chen2021s2hand,
    title={Model-based 3D Hand Reconstruction via Self-Supervised Learning}, 
    author={Chen, Yujin and Tu, Zhigang and Kang, Di and Bao, Linchao and Zhang, Ying and Zhe, Xuefei and Chen, Ruizhi and Yuan, Junsong},
    booktitle={Conference on Computer Vision and Pattern Recognition},
    year={2021}
}
Owner
Yujin Chen
Pose and shape estimation, 3D object and scene understanding.
Yujin Chen
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022