On Evaluation Metrics for Graph Generative Models

Overview

On Evaluation Metrics for Graph Generative Models

Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor

This is the official repository for the paper On Evaluation Metrics for Graph Generative Models (hyperlink TBD). Our evaluation metrics enable the efficient computation of the distance between two sets of graphs regardless of domain. In addition, they are more expressive than previous metrics and easily incorporate continuous node and edge features in evaluation. If you're primarily interested in using our metrics in your work, please see evaluation/ for a more lightweight setup and installation and Evaluation_examples.ipynb for examples on how to utilize our code. The remainder of this README describes how to recreate our results which introduces additional dependencies.

Table of Contents

Requirements and installation

The main requirements are:

  • Python 3.7
  • PyTorch 1.8.1
  • DGL 0.6.1
pip install -r requirements.txt

Following that, install an appropriate version of DGL 0.6.1 for your system and download the proteins and ego datasets by running ./download_datasets.sh.

Reproducing main results

The arguments of our scripts are described in config.py.

Permutation experiments

Below, examples to run the scripts to run certain experiments are shown. In general, experiments can be run as:

python main.py --permutation_type={permutation type} --dataset={dataset}\
{feature_extractor} {feature_extractor_args}

For example, to run the mixing random graphs experiment on the proteins dataset using random-GNN-based metrics for a single random seed:

python main.py --permutation_type=mixing-random --dataset=proteins\
gnn

The hyperparameters of the GNN are set to our recommendations by default, however, they are easily changed by additional flags. To run the same experiment using the degree MMD metric:

python main.py --permutation_type=mixing-random --dataset=proteins\
mmd-structure --statistic=degree

Rank correlations are automatically computed and printed at the end of each experiment, and results are stored in experiment_results/. Recreating our results requires running variations of the above commands thousands of times. To generate these commands and store them in a bash script automatically, run python create_bash_script.py.

Pretraining GNNs

To pretrain a GNN for use in our permutation experiments, run python GIN_train.py, and see GIN_train.py for tweakable hyperparameters. Alternatively, the pretrained models used in our experiments can be downloaded by running ./download_pretrained_models.sh. Once you have a pretrained model, the permutation experiments can be ran using:

python main.py --permutation_type={permutation type} --dataset={dataset}\
gnn --use_pretrained {feature_extractor_args}

Generating graphs

Some of our experiments use graphs generated by GRAN. To find instructions on training and generating graphs using GRAN, please see the official GRAN repository. Alternatively, the graphs generated by GRAN used in our experiments can be downloaded by running ./download_gran_graphs.sh.

Visualization

All code for visualizing results and creating tables is found in data_visualization.ipynb.

License

We release our code under the MIT license.

Citation

@inproceedings{thompson2022evaluation,
  title={On Evaluation Metrics for Graph Generative Models},
  author={Thompson, Rylee, and Knyazev, Boris and Ghalebi, Elahe and Kim, Jungtaek, and Taylor, Graham W},
booktitle={International Conference on Learning Representations},
  year={2022}  
}
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023