Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Overview

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Components of a deep neural networks

This repository contains the code for the paper

B. Glocker, S. Winzeck. Algorithmic encoding of protected characteristics and its implications on disparities across subgroups. 2021. under review. arXiv:2110.14755

Dataset

The CheXpert imaging dataset together with the patient demographic information used in this work can be downloaded from https://stanfordmlgroup.github.io/competitions/chexpert/.

Code

For running the code, we recommend setting up a dedicated Python environment.

Setup Python environment using conda

Create and activate a Python 3 conda environment:

conda create -n pymira python=3
conda activate chexploration

Install PyTorch using conda:

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

Setup Python environment using virtualenv

Create and activate a Python 3 virtual environment:

virtualenv -p python3 <path_to_envs>/chexploration
source <path_to_envs>/chexploration/bin/activate

Install PyTorch using pip:

pip install torch torchvision

Install additional Python packages:

pip install matplotlib jupyter pandas seaborn pytorch-lightning scikit-learn scikit-image tensorboard tqdm openpyxl

How to use

In order to replicate the results presented in the paper, please follow these steps:

  1. Download the CheXpert dataset, copy the file train.csv to the datafiles folder
  2. Download the CheXpert demographics data, copy the file CHEXPERT DEMO.xlsx to the datafiles folder
  3. Run the notebook chexpert.sample.ipynb to generate the study data
  4. Adjust the variable img_data_dir to point to the imaging data and run the following scripts
  5. Run the notebook chexpert.predictions.ipynb to evaluate all three prediction models
  6. Run the notebook chexpert.explorer.ipynb for the unsupervised exploration of feature representations

Additionally, there are scripts chexpert.sex.split.py and chexpert.race.split.py to run SPLIT on the disease detection model. The default setting in all scripts is to train a DenseNet-121 using the training data from all patients. The results for models trained on subgroups only can be produced by changing the path to the datafiles (e.g., using full_sample_train_white.csv and full_sample_val_white.csv instead of full_sample_train.csv and full_sample_val.csv).

Note, the Python scripts also contain code for running the experiments using a ResNet-34 backbone which requires less GPU memory.

Trained models

All trained models, feature embeddings and output predictions can be found here.

Funding sources

This work is supported through funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 757173, Project MIRA, ERC-2017-STG) and by the UKRI London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare.

License

This project is licensed under the Apache License 2.0.

Owner
Team MIRA - BioMedIA
Team MIRA - BioMedIA
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022