Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Overview

Net2Net

Code accompanying the NeurIPS 2020 oral paper

Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

tl;dr Our approach distills the residual information of one model with respect to another's and thereby enables translation between fixed off-the-shelf expert models such as BERT and BigGAN without having to modify or finetune them.

teaser arXiv | BibTeX | Project Page

News Dec 19th, 2020: added SBERT-to-BigGAN, SBERT-to-BigBiGAN and SBERT-to-AE (COCO)

Requirements

A suitable conda environment named net2net can be created and activated with:

conda env create -f environment.yaml
conda activate net2net

Datasets

  • CelebA: Create a symlink 'data/CelebA' pointing to a folder which contains the following files:
    .
    ├── identity_CelebA.txt
    ├── img_align_celeba
    ├── list_attr_celeba.txt
    └── list_eval_partition.txt
    
    These files can be obtained here.
  • CelebA-HQ: Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).
  • FFHQ: Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.
  • Anime Faces: First download the face images from the Anime Crop dataset and then apply the preprocessing of FFHQ to those images. We only keep images where the underlying dlib face recognition model recognizes a face. Finally, create a symlink data/anime which contains the processed anime face images.
  • Oil Portraits: Download here. Unpack the content and place the files in data/portraits. It consists of 18k oil portraits, which were obtained by running dlib on a subset of the WikiArt dataset dataset, kindly provided by A Style-Aware Content Loss for Real-time HD Style Transfer.
  • COCO: Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage.

ML4Creativity Demo

We include a streamlit demo, which utilizes our approach to demonstrate biases of datasets and their creative applications. More information can be found in our paper A Note on Data Biases in Generative Models from the Machine Learning for Creativity and Design at NeurIPS 2020. Download the models from

and place them into logs. Run the demo with

streamlit run ml4cad.py

Training

Our code uses Pytorch-Lightning and thus natively supports things like 16-bit precision, multi-GPU training and gradient accumulation. Training details for any model need to be specified in a dedicated .yaml file. In general, such a config file is structured as follows:

model:
  base_learning_rate: 4.5e-6
  target: 
   
    
  params:
    ...
data:
  target: translation.DataModuleFromConfig
  params:
    batch_size: ...
    num_workers: ...
    train:
      target: 
    
     
      params:
        ...
    validation:
      target: 
     
      
      params:
        ...

     
    
   

Any Pytorch-Lightning model specified under model.target is then trained on the specified data by running the command:

python translation.py --base 
   
     -t --gpus 0,

   

All available Pytorch-Lightning trainer arguments can be added via the command line, e.g. run

python translation.py --base 
   
     -t --gpus 0,1,2,3 --precision 16 --accumulate_grad_batches 2

   

to train a model on 4 GPUs using 16-bit precision and a 2-step gradient accumulation. More details are provided in the examples below.

Training a cINN

Training a cINN for network-to-network translation usually utilizes the Lighnting Module net2net.models.flows.flow.Net2NetFlow and makes a few further assumptions on the configuration file and model interface:

model:
  base_learning_rate: 4.5e-6
  target: net2net.models.flows.flow.Net2NetFlow
  params:
    flow_config:
      target: 
   
    
      params:
        ...

    cond_stage_config:
      target: 
    
     
      params:
        ...

    first_stage_config:
      target: 
     
      
      params:
        ...

     
    
   

Here, the entries under flow_config specifies the architecture and parameters of the conditional INN; cond_stage_config specifies the first network whose representation is to be translated into another network specified by first_stage_config. Our model net2net.models.flows.flow.Net2NetFlow expects that the first
network has a .encode() method which produces the representation of interest, while the second network should have an encode() and a decode() method, such that both of them applied sequentially produce the networks output. This allows for a modular combination of arbitrary models of interest. For more details, see the examples below.

Training a cINN - Superresolution

superres Training details for a cINN to concatenate two autoencoders from different image scales for stochastic superresolution are specified in configs/translation/faces32-to-256.yaml.

To train a model for translating from 32 x 32 images to 256 x 256 images on GPU 0, run

python translation.py --base configs/translation/faces32-to-faces256.yaml -t --gpus 0, 

and specify any additional training commands as described above. Note that this setup requires two pretrained autoencoder models, one on 32 x 32 images and the other on 256 x 256. If you want to train them yourself on a combination of FFHQ and CelebA-HQ, run

python translation.py --base configs/autoencoder/faces32.yaml -t --gpus 
   
    , 

   

for the 32 x 32 images; and

python translation.py --base configs/autoencoder/faces256.yaml -t --gpus 
   
    , 

   

for the model on 256 x 256 images. After training, adopt the corresponding model paths in configs/translation/faces32-to-faces256.yaml. Additionally, we provide weights of pretrained autoencoders for both settings: Weights 32x32; Weights256x256. To run the training as described above, put them into logs/2020-10-16T17-11-42_FacesFQ32x32/checkpoints/last.ckptand logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt, respectively.

Training a cINN - Unpaired Translation

superres All training scenarios for unpaired translation are specified in the configs in configs/creativity. We provide code and pretrained autoencoder models for three different translation tasks:

  • AnimePhotography; see configs/creativity/anime_photography_256.yaml. Download autoencoder checkpoint (Download Anime+Photography) and place into logs/2020-09-30T21-40-22_AnimeAndFHQ/checkpoints/epoch=000007.ckpt.
  • Oil-PortraitPhotography; see configs/creativity/portraits_photography_256.yaml Download autoencoder checkpoint (Download Portrait+Photography) and place into logs/2020-09-29T23-47-10_PortraitsAndFFHQ/checkpoints/epoch=000004.ckpt.
  • FFHQCelebA-HQCelebA; see configs/creativity/celeba_celebahq_ffhq_256.yaml Download autoencoder checkpoint (Download FFHQ+CelebAHQ+CelebA) and place into logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt. Note that this is the same autoencoder checkpoint as for the stochastic superresolution experiment.

To train a cINN on one of these unpaired transfer tasks using the first GPU, simply run

python translation.py --base configs/creativity/
   
    .yaml -t --gpus 0,

   

where .yaml is one of portraits_photography_256.yaml, celeba_celebahq_ffhq_256.yaml or anime_photography_256.yaml. Providing additional arguments to the pytorch-lightning trainer object is also possible as described above.

In our framework, unpaired translation between domains is formulated as a translation between expert 1, a model which can infer the domain a given image belongs to, and expert 2, a model which can synthesize images of each domain. In the examples provided, we assume that the domain label comes with the dataset and provide the net2net.modules.labels.model.Labelator module, which simply returns a one hot encoding of this label. However, one could also use a classification model which infers the domain label from the image itself. For expert 2, our examples use an autoencoder trained jointly on all domains, which is easily achieved by concatenating datasets together. The provided net2net.data.base.ConcatDatasetWithIndex concatenates datasets and returns the corresponding dataset label for each example, which can then be used by the Labelator class for the translation. The training configurations for the autoencoders used in the creativity experiments are included in configs/autoencoder/anime_photography_256.yaml, configs/autoencoder/celeba_celebahq_ffhq_256.yaml and configs/autoencoder/portraits_photography_256.yaml.

Unpaired Translation on Custom Datasets

Create pytorch datasets for each of your domains, create a concatenated dataset with ConcatDatasetWithIndex (follow the example in net2net.data.faces.CCFQTrain), train an autoencoder on the concatenated dataset (adjust the data section in configs/autoencoder/celeba_celebahq_ffhq_256.yaml) and finally train a net2net translation model between a Labelator and your autoencoder (adjust the sections data and first_stage_config in configs/creativity/celeba_celebahq_ffhq_256.yaml). You can then also add your new model to the available modes in the ml4cad.py demo to visualize the results.

Training a cINN - Text-to-Image

texttoimage We provide code to obtain a text-to-image model by translating between a text model (SBERT) and an image decoder. To show the flexibility of our approach, we include code for three different decoders: BigGAN, as described in the paper, BigBiGAN, which is only available as a tensorflow model and thus nicely shows how our approach can work with black-box experts, and an autoencoder.

SBERT-to-BigGAN

Train with

python translation.py --base configs/translation/sbert-to-biggan256.yaml -t --gpus 0,

When running it for the first time, the required models will be downloaded automatically.

SBERT-to-BigBiGAN

Since BigBiGAN is only available on tensorflow-hub, this example has an additional dependency on tensorflow. A suitable environment is provided in env_bigbigan.yaml, and you will need COCO for training. You can then start training with

python translation.py --base configs/translation/sbert-to-bigbigan.yaml -t --gpus 0,

Note that the BigBiGAN class is just a naive wrapper, which converts pytorch tensors to numpy arrays, feeds them to the tensorflow graph and again converts the result to pytorch tensors. It does not require gradients of the expert model and serves as a good example on how to use black-box experts.

SBERT-to-AE

Similarly to the other examples, you can also train your own autoencoder on COCO with

python translation.py --base configs/autoencoder/coco256.yaml -t --gpus 0,

or download a pre-trained one, and translate to it by running

python translation.py --base configs/translation/sbert-to-ae-coco256.yaml -t --gpus 0,

Shout-outs

Thanks to everyone who makes their code and models available.

BibTeX

@misc{rombach2020networktonetwork,
      title={Network-to-Network Translation with Conditional Invertible Neural Networks},
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2020},
      eprint={2005.13580},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{esser2020note,
      title={A Note on Data Biases in Generative Models}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.02516},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023