Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Overview

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann

Mix3D is a data augmentation technique for 3D segmentation methods that improves generalization.

PWC

PyTorch Lightning Config: Hydra Code style: black

teaser



[Project Webpage] [arXiv]

News

  • 12. October 2021: Code released.
  • 6. October 2021: Mix3D accepted for oral presentation at 3DV 2021. Paper on [arXiv].
  • 30. July 2021: Mix3D ranks 1st on the ScanNet semantic labeling benchmark.

Learderboard

Running the code

This repository contains the code for the analysis experiments of section 4.2. Motivation and Analysis Experiments from the paper For the ScanNet benchmark and Table 1 (main paper) we use the original SpatioTemporalSegmentation-Scannet code. To add Mix3D to the original MinkowskiNet codebase, we provide the patch file SpatioTemporalSegmentation.patch. Check the supplementary for more details.

Code structure

├── mix3d
│   ├── __init__.py
│   ├── __main__.py     <- the main file
│   ├── conf            <- hydra configuration files
│   ├── datasets
│   │   ├── outdoor_semseg.py       <- outdoor dataset
│   │   ├── preprocessing       <- folder with preprocessing scripts
│   │   ├── semseg.py       <- indoor dataset
│   │   └── utils.py        <- code for mixing point clouds
│   ├── logger
│   ├── models      <- MinkowskiNet models
│   ├── trainer
│   │   ├── __init__.py
│   │   └── trainer.py      <- train loop
│   └── utils
├── data
│   ├── processed       <- folder for preprocessed datasets
│   └── raw     <- folder for raw datasets
├── scripts
│   ├── experiments
│   │   └── 1000_scene_merging.bash
│   ├── init.bash
│   ├── local_run.bash
│   ├── preprocess_matterport.bash
│   ├── preprocess_rio.bash
│   ├── preprocess_scannet.bash
│   └── preprocess_semantic_kitti.bash
├── docs
├── dvc.lock
├── dvc.yaml        <- dvc file to reproduce the data
├── poetry.lock
├── pyproject.toml      <- project dependencies
├── README.md
├── saved       <- folder that stores models and logs
└── SpatioTemporalSegmentation-ScanNet.patch        <- patch file for original repo

Dependencies

The main dependencies of the project are the following:

python: 3.7
cuda: 10.1

For others, the project uses the poetry dependency management package. Everything can be installed with the command:

poetry install

Check scripts/init.bash for more details.

Data preprocessing

After the dependencies are installed, it is important to run the preprocessing scripts. They will bring scannet, matterport, rio, semantic_kitti datasets to a single format. By default, the scripts expect to find datsets in the data/raw/ folder. Check scripts/preprocess_*.bash for more details.

dvc repro scannet # matterport, rio, semantic_kitti

This command will run the preprocessing for scannet and will save the result using the dvc data versioning system.

Training and testing

Train MinkowskiNet on the scannet dataset without Mix3D with a voxel size of 5cm:

poetry run train

Train MinkowskiNet on the scannet dataset with Mix3D with a voxel size of 5cm:

poetry run train data/collation_functions=voxelize_collate_merge

BibTeX

@inproceedings{Nekrasov213DV,
  title     = {{Mix3D: Out-of-Context Data Augmentation for 3D Scenes}},
  author    = {Nekrasov, Alexey and Schult, Jonas and Litany, Or and Leibe, Bastian and Engelmann, Francis},
  booktitle = {{International Conference on 3D Vision (3DV)}},
  year      = {2021}
}
Owner
Alexey Nekrasov
computer vision researcher
Alexey Nekrasov
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022