Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Overview

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann

Mix3D is a data augmentation technique for 3D segmentation methods that improves generalization.

PWC

PyTorch Lightning Config: Hydra Code style: black

teaser



[Project Webpage] [arXiv]

News

  • 12. October 2021: Code released.
  • 6. October 2021: Mix3D accepted for oral presentation at 3DV 2021. Paper on [arXiv].
  • 30. July 2021: Mix3D ranks 1st on the ScanNet semantic labeling benchmark.

Learderboard

Running the code

This repository contains the code for the analysis experiments of section 4.2. Motivation and Analysis Experiments from the paper For the ScanNet benchmark and Table 1 (main paper) we use the original SpatioTemporalSegmentation-Scannet code. To add Mix3D to the original MinkowskiNet codebase, we provide the patch file SpatioTemporalSegmentation.patch. Check the supplementary for more details.

Code structure

├── mix3d
│   ├── __init__.py
│   ├── __main__.py     <- the main file
│   ├── conf            <- hydra configuration files
│   ├── datasets
│   │   ├── outdoor_semseg.py       <- outdoor dataset
│   │   ├── preprocessing       <- folder with preprocessing scripts
│   │   ├── semseg.py       <- indoor dataset
│   │   └── utils.py        <- code for mixing point clouds
│   ├── logger
│   ├── models      <- MinkowskiNet models
│   ├── trainer
│   │   ├── __init__.py
│   │   └── trainer.py      <- train loop
│   └── utils
├── data
│   ├── processed       <- folder for preprocessed datasets
│   └── raw     <- folder for raw datasets
├── scripts
│   ├── experiments
│   │   └── 1000_scene_merging.bash
│   ├── init.bash
│   ├── local_run.bash
│   ├── preprocess_matterport.bash
│   ├── preprocess_rio.bash
│   ├── preprocess_scannet.bash
│   └── preprocess_semantic_kitti.bash
├── docs
├── dvc.lock
├── dvc.yaml        <- dvc file to reproduce the data
├── poetry.lock
├── pyproject.toml      <- project dependencies
├── README.md
├── saved       <- folder that stores models and logs
└── SpatioTemporalSegmentation-ScanNet.patch        <- patch file for original repo

Dependencies

The main dependencies of the project are the following:

python: 3.7
cuda: 10.1

For others, the project uses the poetry dependency management package. Everything can be installed with the command:

poetry install

Check scripts/init.bash for more details.

Data preprocessing

After the dependencies are installed, it is important to run the preprocessing scripts. They will bring scannet, matterport, rio, semantic_kitti datasets to a single format. By default, the scripts expect to find datsets in the data/raw/ folder. Check scripts/preprocess_*.bash for more details.

dvc repro scannet # matterport, rio, semantic_kitti

This command will run the preprocessing for scannet and will save the result using the dvc data versioning system.

Training and testing

Train MinkowskiNet on the scannet dataset without Mix3D with a voxel size of 5cm:

poetry run train

Train MinkowskiNet on the scannet dataset with Mix3D with a voxel size of 5cm:

poetry run train data/collation_functions=voxelize_collate_merge

BibTeX

@inproceedings{Nekrasov213DV,
  title     = {{Mix3D: Out-of-Context Data Augmentation for 3D Scenes}},
  author    = {Nekrasov, Alexey and Schult, Jonas and Litany, Or and Leibe, Bastian and Engelmann, Francis},
  booktitle = {{International Conference on 3D Vision (3DV)}},
  year      = {2021}
}
Owner
Alexey Nekrasov
computer vision researcher
Alexey Nekrasov
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022