Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

Overview

🦩 Flamingo - Pytorch

Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the perceiver resampler (including the scheme where the learned queries contributes keys / values to be attended to, in addition to media embeddings), the specialized masked cross attention blocks, and finally the tanh gating at the ends of the cross attention + corresponding feedforward blocks

Install

$ pip install flamingo-pytorch

Usage

import torch
from flamingo_pytorch import PerceiverResampler

perceive = PerceiverResampler(
    dim = 1024,
    depth = 2,
    dim_head = 64,
    heads = 8,
    num_latents = 64,    # the number of latents to shrink your media sequence to, perceiver style
    num_time_embeds = 4  # say you have 4 images maximum in your dialogue
)

medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension)
perceived = perceive(medias) # (1, 2, 64, 1024) - (batch, time, num latents, dimension)

Then you insert the GatedCrossAttentionBlock at different intervals in your giant language model. Your text would then attend to the perceived media from above

The recommended way to derive the media_locations boolean tensor would be to allocate a special token id to the media, and then, at the start of your large language model, do media_locations = text_id == media_token_id

import torch
from flamingo_pytorch import GatedCrossAttentionBlock

cross_attn = GatedCrossAttentionBlock(
    dim = 1024,
    dim_head = 64,
    heads = 8
)

text = torch.randn(1, 512, 1024)
perceived = torch.randn(1, 2, 64, 1024)

media_locations = torch.randint(0, 2, (1, 512)).bool()

text = cross_attn(
    text,
    perceived,
    media_locations = media_locations
)

That's it!

Attention is all you need.

Full working example with Flamingo + PaLM 🌴 🦩 🌴

Integration with PaLM

First install vit-pytorch for the vision encoder

$ pip install vit-pytorch

Then

from vit_pytorch.vit import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

vit = Extractor(vit, return_embeddings_only = True)

# first take your trained image encoder and wrap it in an adapter that returns the image embeddings
# here we use the ViT from the vit-pytorch library

import torch
from flamingo_pytorch import FlamingoPaLM

# a PaLM language model, the 540 billion parameter model from google that shows signs of general intelligence

flamingo_palm = FlamingoPaLM(
    num_tokens = 20000,          # number of tokens
    dim = 1024,                  # dimensions
    depth = 12,                  # depth
    heads = 8,                   # attention heads
    dim_head = 64,               # dimension per attention head
    img_encoder = vit,           # plugin your image encoder (this can be optional if you pass in the image embeddings separately, but probably want to train end to end given the perceiver resampler)
    media_token_id = 3,          # the token id representing the [media] or [image]
    cross_attn_every = 3,        # how often to cross attend
    perceiver_num_latents = 64,  # perceiver number of latents, should be smaller than the sequence length of the image tokens
    perceiver_depth = 2          # perceiver resampler depth
)

# train your PaLM as usual

text = torch.randint(0, 20000, (2, 512))

palm_logits = flamingo_palm(text)

# after much training off the regular PaLM logits
# now you are ready to train Flamingo + PaLM
# by passing in images, it automatically freezes everything but the perceiver and cross attention blocks, as in the paper

dialogue = torch.randint(0, 20000, (4, 512))
images = torch.randn(4, 2, 3, 256, 256)

flamingo_logits = flamingo_palm(dialogue, images)

# do your usual cross entropy loss

It is quite evident where this is all headed if you think beyond just images.

Inception

For factual correctness, just imagine where this system would stand if one were to use a state of the art retrieval language model as the base.

Citations

@article{Alayrac2022Flamingo,
    title   = {Flamingo: a Visual Language Model for Few-Shot Learning},
    author  = {Jean-Baptiste Alayrac et al},
    year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Comments
  • PerceiverResampler missing some LayerNorms?

    PerceiverResampler missing some LayerNorms?

    Hey, it feels like PerceiverResampler is missing some LayerNorms? it seems to me we should layer-norm x before sending to attentions loop, and may be add layer-norm to ff(latents) + latents?

    opened by inspirit 7
  • Missing flatten op in PerceiverResampler?

    Missing flatten op in PerceiverResampler?

    Hi, It seems that Flamingo did "x_f = flatten(x_f) # [T, S, d] -> [T * S, d]" (batch size == 1) before putting x_f to attention.

    So, it should be like: medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension) perceived = perceive(medias) # (1, 64, 1024) - (batch, num latents, dimension)

    ??

    opened by zengyan-97 6
  • wrong attention masks?

    wrong attention masks?

    https://github.com/lucidrains/flamingo-pytorch/blob/44920f4191ba3c280ff84c6ebc76025656d1dab5/flamingo_pytorch/flamingo_pytorch.py#L159

    In the flamingo paper, the language features in the gated cross-attention layers only attend to the visual features from the immediate preceding image. I believe your attention masks are created in such a way that they attend to the visual features from all preceding images. Can you confirm? If so, a fix would be to simply change the '>=' to '=='.

    opened by dhansmair 4
  • zeroing out attention not working

    zeroing out attention not working

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_pytorch.py#L179

    you are not using the inplace version of the function: https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill_.html#torch.Tensor.masked_fill_

    so I think this line does not have an effect.

    Best, David

    opened by dhansmair 2
  • Applying parallel attn with ff to existing pretrained model?

    Applying parallel attn with ff to existing pretrained model?

    Hi - awesome work! I am trying to understand ? I couldn't find a paper - only a reference to https://github.com/kingoflolz/mesh-transformer-jax. Is this right? Am I understanding that it is bascially applying multiple operations of for qkv and ff at once? Is it possible to use this trick to modify an existing pretrained model?

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_palm.py#L90

    Many thanks in advance!

    Huu

    opened by ontocord 1
  • How to use Flamingo for VQA task?

    How to use Flamingo for VQA task?

    Hi, Thanks for sharing this awesome implementation. I am very interested in using Flamingo model for my usecase. How I can use this implementation to get inference on my dataset for VQA task? I have certain images of products and want extract some information image of product by questioning it. How I can do it ?

    Please help.

    thanks

    opened by karndeepsingh 0
  • Fine-tuning of a model

    Fine-tuning of a model

    Hi, Thank you for this great work. I want to ask how can I fine-tune this model on my dataset for some downstream task like image captioning or image classification? If it is possible for you can you also please share the code?

    opened by ans92 0
  • Need a sample ipython notebook

    Need a sample ipython notebook

    Hello, @lucidrains,

    Thank you for providing this.

    For demo purposes, could you please provide a sample demo in Jupyter notebook?🫠

    Best, LITDataScience

    opened by LITDataScience 0
Releases(0.1.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022