A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

Overview

3d-pose-baseline

This is the code for the paper

Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3d human pose estimation. In ICCV, 2017. https://arxiv.org/pdf/1705.03098.pdf.

The code in this repository was mostly written by Julieta Martinez, Rayat Hossain and Javier Romero.

We provide a strong baseline for 3d human pose estimation that also sheds light on the challenges of current approaches. Our model is lightweight and we strive to make our code transparent, compact, and easy-to-understand.

Dependencies

First of all

  1. Watch our video: https://youtu.be/Hmi3Pd9x1BE

  2. Clone this repository

git clone https://github.com/una-dinosauria/3d-pose-baseline.git
cd 3d-pose-baseline
mkdir -p data/h36m/
  1. Get the data

Go to http://vision.imar.ro/human3.6m/, log in, and download the D3 Positions files for subjects [1, 5, 6, 7, 8, 9, 11], and put them under the folder data/h36m. Your directory structure should look like this

src/
README.md
LICENCE
...
data/
  └── h36m/
    ├── Poses_D3_Positions_S1.tgz
    ├── Poses_D3_Positions_S11.tgz
    ├── Poses_D3_Positions_S5.tgz
    ├── Poses_D3_Positions_S6.tgz
    ├── Poses_D3_Positions_S7.tgz
    ├── Poses_D3_Positions_S8.tgz
    └── Poses_D3_Positions_S9.tgz

Now, move to the data folder, and uncompress all the data

cd data/h36m/
for file in *.tgz; do tar -xvzf $file; done

Finally, download the code-v1.2.zip file, unzip it, and copy the metadata.xml file under data/h36m/

Now, your data directory should look like this:

data/
  └── h36m/
    ├── metadata.xml
    ├── S1/
    ├── S11/
    ├── S5/
    ├── S6/
    ├── S7/
    ├── S8/
    └── S9/

There is one little fix we need to run for the data to have consistent names:

mv h36m/S1/MyPoseFeatures/D3_Positions/TakingPhoto.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/Photo.cdf

mv h36m/S1/MyPoseFeatures/D3_Positions/TakingPhoto\ 1.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/Photo\ 1.cdf

mv h36m/S1/MyPoseFeatures/D3_Positions/WalkingDog.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/WalkDog.cdf

mv h36m/S1/MyPoseFeatures/D3_Positions/WalkingDog\ 1.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/WalkDog\ 1.cdf

And you are done!

Please note that we are currently not supporting SH detections anymore, only training from GT 2d detections is possible now.

Quick demo

For a quick demo, you can train for one epoch and visualize the results. To train, run

python src/predict_3dpose.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --epochs 1

This should take about <5 minutes to complete on a GTX 1080, and give you around 56 mm of error on the test set.

Now, to visualize the results, simply run

python src/predict_3dpose.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --epochs 1 --sample --load 24371

This will produce a visualization similar to this:

Visualization example

Training

To train a model with clean 2d detections, run:

python src/predict_3dpose.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise

This corresponds to Table 2, bottom row. Ours (GT detections) (MA)

Citing

If you use our code, please cite our work

@inproceedings{martinez_2017_3dbaseline,
  title={A simple yet effective baseline for 3d human pose estimation},
  author={Martinez, Julieta and Hossain, Rayat and Romero, Javier and Little, James J.},
  booktitle={ICCV},
  year={2017}
}

Other implementations

Extensions

License

MIT

Owner
Julieta Martinez
Not affiliated with the University of Toronto
Julieta Martinez
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022