HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Overview

Code for HDR Video Reconstruction

HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)
Guanying Chen, Chaofeng Chen, Shi Guo, Zhetong Liang, Kwan-Yee K. Wong, Lei Zhang

Table of Contents

Overview:

We provide testing and training code. Details of the training and testing dataset can be found in DeepHDRVideo-Dataset. Datasets and the trained models can be download in Google Drive or BaiduYun (TODO).

Dependencies

This model is implemented in PyTorch and tested with Ubuntu (14.04 and 16.04) and Centos 7.

  • Python 3.7
  • PyTorch 1.10 and torchvision 0.30

You are highly recommended to use Anaconda and create a new environment to run this code. The following is an example procedure to install the dependencies.

# Create a new python3.7 environment named hdr
conda create -n hdr python=3.7

# Activate the created environment
source activate hdr

pip install -r requirements.txt

# Build deformable convolutional layer, tested with pytorch 1.1, g++5.5, and cuda 9.0
cd extensions/dcn/
python setup.py develop
# Please refer to https://github.com/xinntao/EDVR if you have difficulty in building this module

Testing

Please first go through DeepHDRVideo-Dataset to familiarize yourself with the testing dataset.

The trained models can be found in Google Drive (Models/). Download and place it to data/models/.

Testing on the synthetic test dataset

The synthetic test dataset can be found in Google Drive (/Synthetic_Dataset/HDR_Synthetic_Test_Dataset.tgz). Download and unzip it to data/. Note that we donot perform global motion alignment for this synthetic dataset.

# Test our method on two-exposure data. Results can be found in data/models/CoarseToFine_2Exp/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
    --benchmark syn_test_dataset --bm_dir data/HDR_Synthetic_Test_Dataset \
    --mnet_name weight_net --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth

# Test our method on three-exposure data. The results can be found in data/models/CoarseToFine_3Exp/
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
    --benchmark syn_test_dataset --bm_dir data/HDR_Synthetic_Test_Dataset \
    --mnet_name weight_net --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth

Testing on the TOG13 dataset

Please download this dataset from TOG13_Dynamic_Dataset.tgz and unzip to data/. Normally when testing on a video, we have to first compute the similarity transformation matrices between neighboring frames using the following commands.

# However, this is optional as the downloaded dataset already contains the require transformation matrices for each scene in Affine_Trans_Matrices/.
python utils/compute_nbr_trans_for_video.py --in_dir data/TOG13_Dynamic_Dataset/ --crf data/TOG13_Dynamic_Dataset/BaslerCRF.mat --scene_list 2Exp_scenes.txt
python utils/compute_nbr_trans_for_video.py --in_dir data/TOG13_Dynamic_Dataset/ --crf data/TOG13_Dynamic_Dataset/BaslerCRF.mat --scene_list 3Exp_scenes.txt
# Test our method on two-exposure data. The results can be found in data/models/CoarseToFine_2Exp/
# Specify the testing scene with --test_scene. Available options are Ninja-2Exp-3Stop WavingHands-2Exp-3Stop Skateboarder2-3Exp-2Stop ThrowingTowel-2Exp-3Stop 
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
    --benchmark tog13_online_align_dataset --bm_dir data/TOG13_Dynamic_Dataset --test_scene ThrowingTowel-2Exp-3Stop --align \ --mnet_name weight_net --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth 
# To test on a specific scene, you can use the --test_scene argument, e.g., "--test_scene ThrowingTowel-2Exp-3Stop".

# Test our method on three-exposure data. The results can be found in data/models/CoarseToFine_3Exp/
# Specify the testing scene with --test_scene. Available options are Cleaning-3Exp-2Stop Dog-3Exp-2Stop CheckingEmail-3Exp-2Stop Fire-2Exp-3Stop
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
    --benchmark tog13_online_align_dataset --bm_dir data/TOG13_Dynamic_Dataset --test_scene Dog-3Exp-2Stop --align \
    --mnet_name weight_net --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth 

Testing on the captured static dataset

The global motion augmented static dataset can be found in Google Drive (/Real_Dataset/Static/).

# Test our method on two-exposure data. Download static_RGB_data_2exp_rand_motion_release.tgz and unzip to data/
# Results can be found in data/models/CoarseToFine_2Exp/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
    --benchmark real_benchmark_dataset --bm_dir data/static_RGB_data_2exp_rand_motion_release --test_scene all \
    --mnet_name weight_net --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth

# Test our method on three-exposure data. Download static_RGB_data_3exp_rand_motion_release.tgz and unzip to data/
# The results can be found in data/models/CoarseToFine_3Exp/
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
    --benchmark real_benchmark_dataset --bm_dir data/static_RGB_data_3exp_rand_motion_release --test_scene all \
    --mnet_name weight_net --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth

Testing on the captured dynamic with GT dataset

The dynamic with GT dataset can be found in Google Drive (/Real_Dataset/Dynamic/).

# Test our method on two-exposure data. Download dynamic_RGB_data_2exp_release.tgz and unzip to data/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
    --benchmark real_benchmark_dataset --bm_dir data/dynamic_RGB_data_2exp_release --test_scene all \
    --mnet_name weight_net  --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth

# Test our method on three-exposure data. Download dynamic_RGB_data_3exp_release.tgz and unzip to data/
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
    --benchmark real_benchmark_dataset --bm_dir data/dynamic_RGB_data_3exp_release --test_scene all \
    --mnet_name weight_net  --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth

Testing on the customized dataset

You have two options to test our method on your dataset. In the first option, you have to implement a customized Dataset class to load your data, which should not be difficult. Please refer to datasets/tog13_online_align_dataset.py.

If you don't want to implement your own Dataset class, you may reuse datasets/tog13_online_align_dataset.py. However, you have to first arrange your dataset similar to TOG13 dataset. Then you can run utils/compute_nbr_trans_for_video.py to compute the similarity transformation matrices between neighboring frames to enable global alignment.

# Use gamma curve if you do not know the camera response function
python utils/compute_nb_transformation_video.py --in_dir /path/to/your/dataset/ --crf gamma --scene_list your_scene_list

HDR evaluation metrics

We evaluate PSRN, HDR-VDP, HDR-VQM metrics using the Matlab code. Please first install HDR Toolbox to read HDR. Then set the paths of the ground-truth HDR and the estimated HDR in matlab/config_eval.m. Last, run main_eval.m in the Matlab console in the directory of matlab/.

main_eval(2, 'Ours')
main_eval(3, 'Ours')

Tonemapping

All visual results in the experiment are tonemapped using Reinhard et al.’s method. Please first install luminance-hdr-cli. In Ubuntu, you may use sudo apt-get install -y luminance-hdr to install it. Then you can use the following command to produce the tonemmapped results.

python utils/tonemapper.py -i /path/to/HDR/

Precomputed Results

The precomputed results can be found in Google Drive (/Results) (TODO).

Training

The training process is described in docs/training.md.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation

If you find this code useful in your research, please consider citing:

@article{chen2021hdr,
  title={{HDR} Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset},
  author={Chen, Guanying and Chen, Chaofeng and Guo, Shi and Liang, Zhetong and Wong, Kwan-Yee K and Zhang, Lei},
  journal=ICCV,
  year={2021}
}
Owner
Guanying Chen
PhD student in HKU
Guanying Chen
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022