An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

Overview

Deep BCI SW ver. 1.0 is released.

An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

Web site: http://deepbci.korea.ac.kr/

We provide detailed information in each forder and every function.

  1. 'Intelligent_BCI': contains deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition.
  • Domain Adversarial NN for BCI: functions related to domaon adversarial neural networks
  • EEG based Meta RL Classifier: functions related to model-based reinforcement learning
  • GRU based Large Size EEG Classifier: data and functions relaated to gated recurrent unit
  • etc
  1. 'Ambulatory_BCI': contains general brain-computer interface-related functions that enable high-performance intent recognition in ambulatory environment
  • Channel Selection Method based on Relevance Score: functions related to electrode selection method by evaluating electrode's contribution to motor imagery based on relevance score and CNNs
  • Correlation optimized using rotation matrix: functions related to cognitive imagery analysis using correlation feature
  • SSVEP decoding in ambulatory envieonment using CNN: functions related to decoding scalp- and ear-EEG in ambulatory environment
  • etc
  1. 'Cognitive_BCI': contains cognitive state-related function that enable to estimaate the cognitive states from multi-modality and user-custermized BCI
  • multi-threshold graph metrics using a range of critiera: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat
  • EEG_Authentication_Program: identifying individuals based on resting-state EEG
  • Ear_EEG_Drowsiness_Detection: identifying individuals based on resting-state EEG using convolutional neural network
  • etc
  1. 'Zero-Training_BCI': contains zero-training brain-computer interface-related functions that enable to minimize additional training
  • ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event Related Potential (ERP) analysis including feature extraction, classification, and visualization
  • SSVEP_based_Mind_Mole_Catching: functions allowing users to play mole cathcing game using their brain activity on single/two-player mode
  • SSVEP_based_BCI_speller: functions related to SSVEP-based speller containing nine classes
  • etc

Acknowledgement: This project was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

You might also like...
 Source code for our paper
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

A repository that finds a person who looks like you by using face recognition technology.
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Comments
Releases(Deep-BCI)
  • Deep-BCI(Dec 21, 2022)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function. The following items were updated in Deep BCI SW ver. 3.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning
1.2 CNN_Based_Motor_Imagery_Intention_Classifier 1.2 EEG_Decoder_for_PE 1.3 Inter_Subject_Contrastive_Learning_for_EEG 1.4 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI & Intuitive_BCI 2.1 Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1.1 Channel Selection Method based on Relevance Score 2.1.2 Codes_for_Mobile_BCI_Dataset 2.1.3 Motor_imagery_on_treadmill 2.1.4 frequency_optimized_local_region_CSP 2.2 Intuitive_BCI: contains general brain-computer interface-related functions that enable high-performance intuitive BCI system 2.2.1 Attention-based_spatio-temporal-spectral_feature_learning_for_subject-specific_EEG_classification 2.2.2 Imagined Speech Classification 2.2.3 Phoneme-level Speech Classification 2.2.4 Speaker_Identification 2.2.5 Transfer Learning for Imagined Speech

    3. Cognitive_BCI: contains the cognitive state-related function that enables to estimate of the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat 3.1 Changes in Resting-state EEG by Working Memory Process 3.2 Detection_Micro-sleep_Using_Transfer_Learning 3.3 EEG_Feature_Fusion 3.4 EEG_ICA_Pipeline_Classifier_Comparison_Tool 3.5 Ear_EEG_Biosignal 3.6 Hybrid_EEG&NIRS_concatenate_CNN 3.7 Multi-modal_Awareness_Status_Monitoring 3.8 NIRS_Channel_Selection_Program 3.9 Prediction_Individual_Anesthetic_Sensitivity 3.10 Prediction_Long-term_Memory_Based_on_Deep_Learning 3.11 Sleep Classification For Sleep Inducing System 3.12 Sleep_Inertia_Analysis_Using_EEG_data 3.13 Sleep_Stage_Classification_Using_EEG

    4. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training 4.1 MI_Analysis_based_on_ML 4.2 SSVEP_based_BCI_speller 4.3 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
    Source.code.zip(1317.45 MB)
  • DeepBCI(Dec 28, 2021)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function.

    The following items were updated in Deep BCI SW ver. 2.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning 
1.2 CNN_Based_Motor_Imagery_Intention_Classifier
 1.3 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1 Ambulatory_BCI 
2.2 Intuitive_BCI

    3. Cognitive_BCI': contains the cognitive state-related function that enables to estimate the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat

    3.1 Detection_Micro-sleep_Using_Transfer_Learning
 3.2 Prediction_Individual_Anesthetic_Sensitivity 
3.3 Prediction_Long-term_Memory_Based_on_Deep_Learning 
3.4 Sleep_Stage_Classification_Using_EEG
3.5 EEG_Feature_Fusion
 3.6 Ear_EEG_Biosignal 
3.7 Hybrid_EEG&NIRS_concatenate_CNN 
3.8 Multi-modal_Awareness_Status_Monitoring 
3.9 NIRS_Channel_Selection_Program

    1. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training
ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event-Related Potential (ERP) analysis including feature extraction, classification, and visualization 4.1 SSVEP_based_BCI_speller
 4.2 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
Owner
deepbci
deepbci
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022