A repository that finds a person who looks like you by using face recognition technology.

Overview

Find Your Twin

Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie or TV show. I respect the art of make-up, but I am one of those who think that a different actor should play in that scene.

If we look at the developments in computer vision in recent years, there will be no need for make-up in such cases. I think that face swapping and similar approaches will make great contributions to the cinema industry in this field.

In this project, we will take a look at the problem of casting agencies, which is the first thing I wonder about. We will have an open source CelebA dataset of celebrities. We will find the face closest to the face we have given as input from this dataset.

To run the project, you need to perform 2 steps. The first is to create an identity pool, and the second is to find the identity closest to the photo given as input in this pool.

According to GDPR, CCPA and KVKK images containing biometric information of individuals cannot be processed unless they consent.

Requirements

First of all, I suggest you to create a new environment in order not to break the environment you are using. Then you can find the required tools from requirements.txt

pip install -r requirements.txt

As the face recognition model, I use the PyTorch version of the ArcfaceR100 model from the insightface repository. You can download the weights by clicking this link (Only backbone.pth is enough). Then place it into src/models/backbone.pth.

1. Create Identity Pool

The identity pool to be created will process all images of a dataset one by one and save them to a pickle. If we need to go in accordance with the story, it can be said to process the images of the people in all the casting agencies one by one. This pool can be created with any dataset found on the Internet (FFHQ, CelebA-HQ, etc.). As I said before, I will use the CelebA dataset.

If you want to pass this process, the pool prepared with the CelebA dataset is available at this link.

If you are the lucky person who wants to prepare your pool in your own dataset, you should set the arguments. If your dataset is ready and you have downloaded the face recognition model, you can start creating an identity pool with the following command.

Format:
python create_pool.py --weightPath <Path of backbone.pth> --device <CUDA or CPU> --poolResultName <Pickle save name> --imagePaths <Your images path>

Example:
python create_pool.py --weightPath src/models/backbone.pth --device cuda:0 --poolResultName CelebrityPool2.pkl --imagePaths CelebaImages

2. Find Your Twin

You've created your pool and now it's time to try it out. First of all, you need one input image to perform the test. I left mine for testing if you want to use it :) There are two parameters in the command you will use here, except the ones you set when creating the pool.

Format:
python create_pool.py --yourImage <Input inference image> --resultImageName <Your twin image name>

Example:
python create_pool.py --yourImage cengizhan.jpg --resultImageName Twin.jpg

The magic happened and you found the closest face to your own in the identity pool you created.

InputImage TwinImage

I think the face that comes out most similar to me in dataset is not very similar, but you should try it too. Because this handsomeness can also be unique.

Owner
Cengizhan Yurdakul
Computer Vision Engineer
Cengizhan Yurdakul
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023