Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Overview

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

This is the code for implementing the MADDPG algorithm presented in the paper: Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning. It is configured to be run in conjunction with environments from the (https://github.com/qian18long/epciclr2020/tree/master/mpe_local). We show our gif results here (https://sites.google.com/view/epciclr2020/). Note: this codebase has been restructured since the original paper, and the results may vary from those reported in the paper.

Installation

  • Install tensorflow 1.13.1
pip install tensorflow==1.13.1
  • Install OpenAI gym
pip install gym==0.13.0
  • Install other dependencies
pip install joblib imageio

Case study: Multi-Agent Particle Environments

We demonstrate here how the code can be used in conjunction with the(https://github.com/qian18long/epciclr2020/tree/master/mpe_local). It is based on(https://github.com/openai/multiagent-particle-envs)

Quick start

  • See train_grassland_epc.sh, train_adversarial_epc.sh and train_food_collect_epc.sh for the EPC algorithm for scenario grassland, adversarial and food_collect in the example setting presented in our paper.

Command-line options

Environment options

  • --scenario: defines which environment in the MPE is to be used (default: "grassland")

  • --map-size: The size of the environment. 1 if normal and 2 otherwise. (default: "normal")

  • --sight: The agent's visibility radius. (default: 100)

  • --alpha: Reward shared weight. (default: 0.0)

  • --max-episode-len maximum length of each episode for the environment (default: 25)

  • --num-episodes total number of training episodes (default: 200000)

  • --num-good: number of good agents in the scenario (default: 2)

  • --num-adversaries: number of adversaries in the environment (default: 2)

  • --num-food: number of food(resources) in the scenario (default: 4)

  • --good-policy: algorithm used for the 'good' (non adversary) policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

  • --adv-policy: algorithm used for the adversary policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

Core training parameters

  • --lr: learning rate (default: 1e-2)

  • --gamma: discount factor (default: 0.95)

  • --batch-size: batch size (default: 1024)

  • --num-units: number of units in the MLP (default: 64)

  • --good-num-units: number of units in the MLP of good agents, if not providing it will be num-units.

  • --adv-num-units: number of units in the MLP of adversarial agents, if not providing it will be num-units.

  • --n_cpu_per_agent: cpu usage per agent (default: 1)

  • --good-share-weights: good agents share weights of the agents encoder within the model.

  • --adv-share-weights: adversarial agents share weights of the agents encoder within the model.

  • --use-gpu: Use GPU for training (default: False)

  • --n-envs: number of environments instances in parallelization

Checkpointing

  • --save-dir: directory where intermediate training results and model will be saved (default: "/test/")

  • --save-rate: model is saved every time this number of episodes has been completed (default: 1000)

  • --load-dir: directory where training state and model are loaded from (default: "test")

Evaluation

  • --restore: restores previous training state stored in load-dir (or in save-dir if no load-dir has been provided), and continues training (default: False)

  • --display: displays to the screen the trained policy stored in load-dir (or in save-dir if no load-dir has been provided), but does not continue training (default: False)

  • --save-gif-data: Save the gif examples to the save-dir (default: False)

  • --render-gif: Render the gif in the load-dir (default: False)

EPC options

  • --initial-population: initial population size in the first stage

  • --num-selection: size of the population selected for reproduction

  • --num-stages: number of stages

  • --stage-num-episodes: number of training episodes in each stage

  • --stage-n-envs: number of environments instances in parallelization in each stage

  • --test-num-episodes: number of episodes for the competing

Example scripts

  • .maddpg_o/experiments/train_normal.py: apply the train_helpers.py for MADDPG, Att-MADDPG and mean-field training
  • .maddpg_o/experiments/train_x2.py: apply a single step doubling training

  • .maddpg_o/experiments/train_mix_match.py: mix match of the good agents in --sheep-init-load-dirs and adversarial agents in '--wolf-init-load-dirs' for model agents evaluation.

  • .maddpg_o/experiments/train_epc.py: train the scheduled EPC algorithm.

  • .maddpg_o/experiments/compete.py: evaluate different models by competition

Paper citation

@inproceedings{epciclr2020,
  author = {Qian Long and Zihan Zhou and Abhinav Gupta and Fei Fang and Yi Wu and Xiaolong Wang},
  title = {Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning},
  booktitle = {International Conference on Learning Representations},
  year = {2020}
}
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022