Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Overview

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Figure: Example visualization of the method and baseline as a spectogram

This is the implementation of our Project for the course "Deep Learning: Architectures and Methods" by Prof. Christian Kersting from the Artificial Intelligence and Machine Learning Lab at the Technical University of Darmstadt in the summer semester 2021.

In the field of audio signal processing, Super-Resolution is one of the most relevant topics. The motivation is to reconstruct high- quality audio from low-quality signals. From a practical perspective, the technique has applications in telephony or generally in applications in which audio is transmitted and has to be compressed accordingly. Other applications are the processing of ancient recordings, for example old sound recordings of music, speech or videos. First approaches of the combination of machine learning and audio signal processing lead to promising results and outperform standard techniques. Accordingly the scope of the project was to reimplement the paper Temporal FiLM: Capturing Long-Range SequenceDependencies with Feature-Wise Modulation by Birnbaum et al. in PyTorch, reproduce the results and extend them further to the music domain.

This repository contains everything needed to prepare the data sets, train the model and create final evaluation and visualization of the results. We also provide the weights of the models to reproduce our reported results.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires at least one NVIDIA GeForce GTX 980 (4GB memory).

  • Create conda environment:
conda create --name audiosr
source activate audiosr
conda install PYTORCH torchvision cudatoolkit=11.0 -c pytorch
  • Install the dependencies:
pip install -r requirements.txt

Dataset preparation

To reproduce the results shown below tha datasets have to be prepared. This repo includes scripts to prepare the following dataset:

VCTK preparation

  • run prep_dataset.py from ./datasets to create a h5 container of a specified input.
  • to reproduce results prepare the following h5 files:
python prep_dataset.py \
  --file-list vctk/speaker1/speaker1-train-files.txt \
  --in-dir ./VCTK-Corpus/wav48/p225/ \
  --out vctk-speaker1-train.4.16000.8192.4096.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 4096 \
  --interpolate \
  --low-pass
python prep_dataset.py \
  --file-list vctk/speaker1/speaker1-val-files.txt \
  --in-dir ./VCTK-Corpus/wav48/p225/ \
  --out vctk-speaker1-val.4.16000.8192.4096.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 4096 \
  --interpolate \
  --low-pass

GTZAN preparation

  • run prep_dataset.py from ./datasets to create a h5 container of a specified input.
  • to reproduce results prepare the following h5 files:
python prep_dataset.py \
  --file-list gtzan/blues_wav_list_train.txt \
  --in-dir gtzan/data/genres/blues/ \
  --out blues-train.4.22000.8192.16384.h5 \
  --scale 4 \
  --sr 22000 \
  --dimension 8192 \
  --stride 16384 \
  --interpolate \
  --low-pass
python prep_dataset.py \
  --file-list gtzan/blues_wav_list_val.txt \
  --in-dir gtzan/data/genres/blues/ \
  --out blues-val.4.22000.8192.16384.h5 \
  --scale 4 \
  --sr 22000 \
  --dimension 8192 \
  --stride 16384 \
  --interpolate \
  --low-pass

Piano dataset preparation

python prep_piano.py \
  --file-list data/music_train.npy \
  --out piano-train.4.16000.8192.131072.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 131072 \
  --interpolate \
  --low-pass
python prep_piano.py \
  --file-list data/music_valid.npy \
  --out piano-val.4.16000.8192.131072.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 131072 \
  --interpolate \
  --low-pass

Notes:

  • the --in-dir argument has to be adapted to the respective dataset location
  • The dimension parameter and sampling rate define the absolute length of a patch (dim/sr = length patch)

Model

Generally, there are three main models in this implementation.

Baseline

On the one hand the b-spline interpolation which serves as the baseline and can be found in the data loader in prep_dataset.py.

Model

On the other hand two neural networks whose implementation can be found in the /models/ folder. In a first step a model was implemented which uses a batchnorm layer instead of the later used TFILM layer. This is implemented in audiounet.py. The final model, which is also used in the paper, can be found in tfilmunet.py.

Train Model

To run the trainings use the following commands and change the dataset root the corresponding domain.

python train.py \
  --dataset-root hereroottodataset! \
  --epochs 50 \
  --lr 3*10e-4 \
  --batch-size 16 

Evaluation

Save examples from inference

It is possible to evaluate any given wav-file with the inference.py script by invoking the --save-example flag and saving the results as wav-files and spectrogram plots. The script performs the following steps:

  • prepares all files in a provided list (--wave-file-list) and creates a low-res version and the baseline reconstruction
  • runs inference on the prepared files to create a super-resolution output
  • saves all results to the "examples" folder with the respective file names
  • saves spectrogram plots of all versions as pdf-files

Notes:

It is important to adapt the sampling parameter (--sr) which is set to 16000 by default. The sampling rate has to be the one of the original wav file. The scale (--scale) defines the down sampling factor which is set to 4 by default. Depending on which trained model is used for the inference the parameters --checkpoints-root and --checkpoint have to be specified accordingly.

To reproduce an example from our plot run the following command from the repo root directory (modify --checkpoints-root if necessary):

python inference.py \
  --save-example \
  --wave-file-list assets/save_wav_list.txt \
  --scale 4 \
  --sr 16000 \
  --checkpoint pretrained/vctk_speaker1_pretrained.pth

Results

Training Dataset Ratio BASELINE SNR (dB) BASELINE LSD (dB) METHOD SNR (dB) METHOD LSD (dB) Checkpoint
VTCK SingleSpeaker r = 4 15.6 5.4 16.6 3.2 Checkpoint
Piano r = 4 19.7 2.9 20.4 2.2 Checkpoint
GTZAN (Genre: Blues) r = 4 13.3 7.8 13.8 3.8 Checkpoint

Qualitative Examples

Here we provide a qualitative example per Dataset. These can be generated using inference.py

VTCK SingleSpeaker Piano GTZAN (Genre: Blues)
Low Resolution Low Resolution Low Resolution
Baseline Baseline Baseline
Method Method Method
High Resolution High Resolution High Resolution
Owner
Oliver Hahn
Master Thesis @VIsual Inference Lab | Grad Student @Technical University of Darmstadt
Oliver Hahn
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022