Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Overview

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

License: GPL v3

Introduction

This repository includes codes and models of "Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection" paper. link: https://doi.org/10.1016/j.compbiomed.2020.104121

Dataset

First you should download the MHSMA dataset using:

git clone https://github.com/soroushj/mhsma-dataset.git

Usage

First of all,the configuration file should be setted.So open dmtl.txt or dtl.txt and set the setting you want.This files contains paramaters of the model that you are going to train.

  • dtl.txt have only one line and contains paramaters to train a DTL model.

  • dmtl.txt contains two lines:paramaters of stage 1 are kept in the first line of the file and paramaters of stage 2 are kept in the second line of the file.
    Some paramaters have an aray of three values that they keep the value of three labels.To set them,consider this sequence:[Acrosome,Vacoule,Head].

  • To train a DTL model,use the following commands and arguments:

python train.py -t dtl [-e epchos] [-label label]  [-model model] [-w file] 

Argumetns:

Argument Description
-t type of network(dtl or dmtl)
-e number of epochs
-label label(a,v or h)
-model pre-trained model
-w name of best weihgt file
--phase You can use it to choose stage in DMTL(1 or 2)
--second_model The base model for second stage of DMTL

1.Train

  • To choose a pre-trained model, you can use one of the following models:
model argument Description
vgg_19 VGG 19
vgg_16 VGG 16
resnet_50 Resnet 50
resnet_101 Resnet 101
resnet_502 Resnet 502
  • To train a DMTL model,use the following commands and arguments:
python train.py -t dmtl [--phase phase] [-e epchos] [-label label] [-model model] [-w file]

Also you can use your own pre-trained model by using address of your model instead of the paramaters been told in the table above.

Example:
python train.py -t dmtl --phase 1 -e 100 -label a -model C:\model.h5 -w w.h5

2.K Fold

  • To perform K Fold on a model,use "-k_fold True" argument.
python train.py -k_fold True [-t type] [-e epchos] [-label label] [-model model] [-w file]

3.Threshold Search

  • To find a good threshold for your model,use the following code:
python threshold.py [-t type] [-addr model address] [-l label]

Models

The CNN models that were introduced and evaluated in our research paper can be found in the v1.0 release of this repository.

You might also like...
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Multi-task yolov5 with detection and segmentation based on yolov5
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

A novel Engagement Detection with Multi-Task Training (ED-MTT) system
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Comments
  • a possible typo(bug)

    a possible typo(bug)

    Very interesting idea and complements!

    In LoadData.py, starting from line 150, ` if phase == 'search':

        return {
                "x_train": x_train_128,
                "y_train": y_train,
                "x_train_128": x_train_128,
                'x_val_128': x_valid_128,
                "x_val": x_valid_128,
                "y_val": y_valid,
                "x_test": x_test_128,
                "y_test": y_test
                }`
    

    here, I think that the first key-value pair should probably be "x_train": x_train instead of "x_train": x_train_128, which causes an error of shape mismatch during fit.

    opened by captainst 0
Releases(v1.0)
Owner
Amir Abbasi
Student at University of Guilan (Computer Engineering), Working on Computer Vision & Reinforcement Learning
Amir Abbasi
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Nicholas Lee 3 Jan 09, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022