Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Overview

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

This project hosts the code for implementing the DenseCL algorithm for self-supervised representation learning.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training,
Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, Lei Li
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2021
arXiv preprint (arXiv 2011.09157)

highlights2

Highlights

  • Boosting dense predictions: DenseCL pre-trained models largely benefit dense prediction tasks including object detection and semantic segmentation (up to +2% AP and +3% mIoU).
  • Simple implementation: The core part of DenseCL can be implemented in 10 lines of code, thus being easy to use and modify.
  • Flexible usage: DenseCL is decoupled from the data pre-processing, thus enabling fast and flexible training while being agnostic about what kind of augmentation is used and how the images are sampled.
  • Efficient training: Our method introduces negligible computation overhead (only <1% slower) compared to the baseline method.

highlights

Updates

  • Code and pre-trained models of DenseCL are released. (02/03/2021)

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on COCO or ImageNet.

pre-train method pre-train dataset backbone #epoch training time VOC det VOC seg Link
Supervised ImageNet ResNet-50 - - 54.2 67.7 download
MoCo-v2 COCO ResNet-50 800 1.0d 54.7 64.5 download
DenseCL COCO ResNet-50 800 1.0d 56.7 67.5 download
DenseCL COCO ResNet-50 1600 2.0d 57.2 68.0 download
MoCo-v2 ImageNet ResNet-50 200 2.3d 57.0 67.5 download
DenseCL ImageNet ResNet-50 200 2.3d 58.7 69.4 download
DenseCL ImageNet ResNet-101 200 4.3d 61.3 74.1 download

Note:

  • The metrics for VOC det and seg are AP (COCO-style) and mIoU. The results are averaged over 5 trials.
  • The training time is measured on 8 V100 GPUs.
  • See our paper for more results on different benchmarks.

Usage

Training

./tools/dist_train.sh configs/selfsup/densecl/densecl_coco_800ep.py 8

Extracting Backbone Weights

WORK_DIR=work_dirs/selfsup/densecl/densecl_coco_800ep/
CHECKPOINT=${WORK_DIR}/epoch_800.pth
WEIGHT_FILE=${WORK_DIR}/extracted_densecl_coco_800ep.pth

python tools/extract_backbone_weights.py ${CHECKPOINT} ${WEIGHT_FILE}

Transferring to Object Detection and Segmentation

Please refer to README.md for transferring to object detection and semantic segmentation.

Tips

  • After extracting the backbone weights, the model can be used to replace the original ImageNet pre-trained model as initialization for many dense prediction tasks.
  • If your machine has a slow data loading issue, especially for ImageNet, your are suggested to convert ImageNet to lmdb format through folder2lmdb_imagenet.py, and use this config for training.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{wang2020DenseCL,
  title={Dense Contrastive Learning for Self-Supervised Visual Pre-Training},
  author={Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
Xinlong Wang
Xinlong Wang
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022