This is an official implementation for "Video Swin Transformers".

Overview

Video Swin Transformer

PWC PWC PWC

By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu.

This repo is the official implementation of "Video Swin Transformer". It is based on mmaction2.

Updates

06/25/2021 Initial commits

Introduction

Video Swin Transformer is initially described in "Video Swin Transformer", which advocates an inductive bias of locality in video Transformers, leading to a better speed-accuracy trade-off compared to previous approaches which compute self-attention globally even with spatial-temporal factorization. The locality of the proposed video architecture is realized by adapting the Swin Transformer designed for the image domain, while continuing to leverage the power of pre-trained image models. Our approach achieves state-of-the-art accuracy on a broad range of video recognition benchmarks, including on action recognition (84.9 top-1 accuracy on Kinetics-400 and 86.1 top-1 accuracy on Kinetics-600 with ~20x less pre-training data and ~3x smaller model size) and temporal modeling (69.6 top-1 accuracy on Something-Something v2).

teaser

Results and Models

Kinetics 400

Backbone Pretrain Lr Schd spatial crop [email protected] [email protected] #params FLOPs config model
Swin-T ImageNet-1K 30ep 224 78.8 93.6 28M 87.9G config github/baidu
Swin-S ImageNet-1K 30ep 224 80.6 94.5 50M 165.9G config github/baidu
Swin-B ImageNet-1K 30ep 224 80.6 94.6 88M 281.6G config github/baidu
Swin-B ImageNet-22K 30ep 224 82.7 95.5 88M 281.6G config github/baidu

Kinetics 600

Backbone Pretrain Lr Schd spatial crop [email protected] [email protected] #params FLOPs config model
Swin-B ImageNet-22K 30ep 224 84.0 96.5 88M 281.6G config github/baidu

Something-Something V2

Backbone Pretrain Lr Schd spatial crop [email protected] [email protected] #params FLOPs config model
Swin-B Kinetics 400 60ep 224 69.6 92.7 89M 320.6G config github/baidu

Notes:

Usage

Installation

Please refer to install.md for installation.

We also provide docker file cuda10.1 (image url) and cuda11.0 (image url) for convenient usage.

Data Preparation

Please refer to data_preparation.md for a general knowledge of data preparation. The supported datasets are listed in supported_datasets.md.

Inference

# single-gpu testing
python tools/test.py <CONFIG_FILE> <CHECKPOINT_FILE> --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh <CONFIG_FILE> <CHECKPOINT_FILE> <GPU_NUM> --eval top_k_accuracy

Training

To train a video recognition model with pre-trained image models (for Kinetics-400 and Kineticc-600 datasets), run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.backbone.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.backbone.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

For example, to train a Swin-T model for Kinetics-400 dataset with 8 gpus, run:

bash tools/dist_train.sh configs/recognition/swin/swin_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=<PRETRAIN_MODEL> 

To train a video recognizer with pre-trained video models (for Something-Something v2 datasets), run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options load_from=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options load_from=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

For example, to train a Swin-B model for SSv2 dataset with 8 gpus, run:

bash tools/dist_train.sh configs/recognition/swin/swin_base_patch244_window1677_sthv2.py 8 --cfg-options load_from=<PRETRAIN_MODEL>

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liu2021video,
  title={Video Swin Transformer},
  author={Liu, Ze and Ning, Jia and Cao, Yue and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Hu, Han},
  journal={arXiv preprint arXiv:2106.13230},
  year={2021}
}

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Other Links

Image Classification: See Swin Transformer for Image Classification.

Object Detection: See Swin Transformer for Object Detection.

Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Self-Supervised Learning: See MoBY with Swin Transformer.

Owner
Swin Transformer
This organization maintains repositories built on Swin Transformers. The pretrained models locate at https://github.com/microsoft/Swin-Transformer
Swin Transformer
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022