Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

Overview

A Shared Representation for Photorealistic Driving Simulators

The official code for the paper: "A Shared Representation for Photorealistic Driving Simulators" , paper, arXiv

A Shared Representation for Photorealistic Driving Simulators
Saeed Saadatnejad, Siyuan Li, Taylor Mordan, Alexandre Alahi, 2021. A powerful simulator highly decreases the need for real-world tests when training and evaluating autonomous vehicles. Data-driven simulators flourished with the recent advancement of conditional Generative Adversarial Networks (cGANs), providing high-fidelity images. The main challenge is synthesizing photo-realistic images while following given constraints. In this work, we propose to improve the quality of generated images by rethinking the discriminator architecture. The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses. We build on successful cGAN models to propose a new semantically-aware discriminator that better guides the generator. We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning. The achieved improvements are generic and simple enough to be applied to any architecture of conditional image synthesis. We demonstrate the strength of our method on the scene, building, and human synthesis tasks across three different datasets.

Example

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

  1. Clone this repo.
git clone https://github.com/vita-epfl/SemDisc.git
cd ./SemDisc

Prerequisites

  1. Please install dependencies by
pip install -r requirements.txt

Dataset Preparation

  1. The cityscapes dataset can be downloaded from here: cityscapes

For the experiment, you will need to download [gtFine_trainvaltest.zip] and [leftImg8bit_trainvaltest.zip] and unzip them.

Training

After preparing all necessary environments and the dataset, activate your environment and start to train the network.

Training with the semantic-aware discriminator

The training is doen in two steps. First, the network is trained without only the adversarial head of D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 0 --niter 100 \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

After the network is trained for some epochs, we finetune it with the complete D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 100 --niter 100 --continue_train --active_GSeg \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

You can change netG to different options [spade, asapnets, pix2pixhd].

Training with original discriminator

The original model can be trained with the following command for comparison.

python train.py --name spade_orig --dataset_mode cityscapes --netG spade \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--niter_decay 100 --niter 100 --aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

Similarly, you can change netG to different options [spade, asapnets, pix2pixhd].

For now, only training on GPU is supported. In case of lack of space, try decreasing the batch size.

Test

Tests - image synthesis

After you have the trained networks, run the test as follows to get the synthesized images for both original and semdisc models

python test.py --name $name --dataset_mode cityscapes \
--checkpoints_dir <checkpoints path> --dataroot <data path> --results_dir ./results/ \
--which_epoch latest --aspect_ratio 1 --load_size 256 --crop_size 256 \
--netG spade --how_many 496

Tests - FID

For reporting FID scores, we leveraged fid-pytorch. To compute the score between two sets:

python fid/pytorch-fid/fid_score.py <GT_image path> <synthesized_image path> >> results/fid_$name.txt

Tests - segmentation

For reporting the segmentation scores, we used DRN. The pre-trained model (and some other details) can be found on this page. Follow the instructions on the DRN github page to setup Cityscapes.

You should have a main folder containing the drn/ folder (from github), the model .pth, the info.json, the val_images.txt and val_labels.txt, a 'labels' folder with the *_trainIds.png images, and a 'synthesized_image' folder with your *_leftImg8bit.png images.

The info.json is from the github, the val_images.txt and val_labels.txt can be obtained with the commands:

find labels/ -maxdepth 3 -name "*_trainIds.png" | sort > val_labels.txt
find synthesized_image/ -maxdepth 3 -name "*_leftImg8bit.png" | sort > val_images.txt

You also need to resize the label images to that size. You can do it with the convert command:

convert -sample 512X256\! "<Cityscapes val>/frankfurt/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/lindau/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/munster/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"

and the output of the models:

convert -sample 512X256\! "<Cityscapes test results path>/test_latest/images/synthesized_image/*.png" -set filename:base "%[base]" "synthesized_image/%[filename:base].png"

Then I run the model with:

cd drn/
python3 segment.py test -d ../ -c 19 --arch drn_d_105 --pretrained ../drn-d-105_ms_cityscapes.pth --phase val --batch-size 1 --ms >> ./results/seg_$name.txt

Acknowledgments

The base of the code is borrowed from SPADE. Please refer to SPADE to see the details.

Citation

@article{saadatnejad2021semdisc,
  author={Saadatnejad, Saeed and Li, Siyuan and Mordan, Taylor and Alahi, Alexandre},
  journal={IEEE Transactions on Intelligent Transportation Systems}, 
  title={A Shared Representation for Photorealistic Driving Simulators}, 
  year={2021},
  doi={10.1109/TITS.2021.3131303}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022