GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

Related tags

Deep LearningGeoMol
Overview

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles


This repository contains a method to generate 3D conformer ensembles directly from the molecular graph as described in our paper.

Requirements

  • python (version>=3.7.9)
  • pytorch (version>=1.7.0)
  • rdkit (version>=2020.03.2)
  • pytorch-geometric (version>=1.6.3)
  • networkx (version>=2.5.1)
  • pot (version>=0.7.0)

Installation

Data

Download and extract the GEOM dataset from the original source:

  1. wget https://dataverse.harvard.edu/api/access/datafile/4327252
  2. tar -xvf 4327252

Environment

Run make conda_env to create the conda environment. The script will request you to enter one of the supported CUDA versions listed here. The script uses this CUDA version to install PyTorch and PyTorch Geometric. Alternatively, you could manually follow the steps to install PyTorch Geometric here.

Usage

This should result in two different directories, one for each half of GEOM. You should place the qm9 conformers directory in the data/QM9/ directory and do the same for the drugs directory. This is all you need to train the model:

python train.py --data_dir data/QM9/qm9/ --split_path data/QM9/splits/split0.npy --log_dir ./test_run --n_epochs 250 --dataset qm9

Use the provided script to generate conformers. The test_csv arg should be a csv file with SMILES in the first column, and the number of conformers you want to generate in the second column. This will output a compressed dictionary of rdkit mols in the trained_model_dir directory (unless you provide the out arg):

python generate_confs.py --trained_model_dir trained_models/qm9/ --test_csv data/QM9/test_smiles.csv --dataset qm9

You can use the provided visualize_confs.ipynb jupyter notebook to visualize the generated conformers.

Additional comments

Training

To train the model, our code randomly samples files from the GEOM dataset and randomly samples conformers within those files. This is a lot of file I/O, which wasn't a huge issue for us when training, but could be an issue for others. If you're having issues with this, feel free to reach out, and I can help you reconfigure the code.

Some limitations

Currently, the model is hardcoded for atoms with a max of 4 neighbors. Since the dataset we train on didn't have atoms with more than 4 neighbors, we made this choice to speed up the code. In principle, the code can be adapted for something like a pentavalent phosphorus, but this wasn't a priority for us.

We can't deal with disconnected fragments (i.e. there is a "." in the SMILES).

This code will work poorly for macrocycles.

To ensure correct predictions, ALL tetrahedral chiral centers must be specified. There's probably a way to automate the specification of "rigid" chiral centers (e.g. in a fused ring), which I'll hopefully figure out soon, but I'm grad student with limited time :(

Feedback and collaboration

Code like this doesn't improve without feedback from the community. If you have comments/suggestions, please reach out to us! We're always happy to chat and provide input on how you can take this method to the next level.

The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022