GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

Related tags

Deep LearningGeoMol
Overview

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles


This repository contains a method to generate 3D conformer ensembles directly from the molecular graph as described in our paper.

Requirements

  • python (version>=3.7.9)
  • pytorch (version>=1.7.0)
  • rdkit (version>=2020.03.2)
  • pytorch-geometric (version>=1.6.3)
  • networkx (version>=2.5.1)
  • pot (version>=0.7.0)

Installation

Data

Download and extract the GEOM dataset from the original source:

  1. wget https://dataverse.harvard.edu/api/access/datafile/4327252
  2. tar -xvf 4327252

Environment

Run make conda_env to create the conda environment. The script will request you to enter one of the supported CUDA versions listed here. The script uses this CUDA version to install PyTorch and PyTorch Geometric. Alternatively, you could manually follow the steps to install PyTorch Geometric here.

Usage

This should result in two different directories, one for each half of GEOM. You should place the qm9 conformers directory in the data/QM9/ directory and do the same for the drugs directory. This is all you need to train the model:

python train.py --data_dir data/QM9/qm9/ --split_path data/QM9/splits/split0.npy --log_dir ./test_run --n_epochs 250 --dataset qm9

Use the provided script to generate conformers. The test_csv arg should be a csv file with SMILES in the first column, and the number of conformers you want to generate in the second column. This will output a compressed dictionary of rdkit mols in the trained_model_dir directory (unless you provide the out arg):

python generate_confs.py --trained_model_dir trained_models/qm9/ --test_csv data/QM9/test_smiles.csv --dataset qm9

You can use the provided visualize_confs.ipynb jupyter notebook to visualize the generated conformers.

Additional comments

Training

To train the model, our code randomly samples files from the GEOM dataset and randomly samples conformers within those files. This is a lot of file I/O, which wasn't a huge issue for us when training, but could be an issue for others. If you're having issues with this, feel free to reach out, and I can help you reconfigure the code.

Some limitations

Currently, the model is hardcoded for atoms with a max of 4 neighbors. Since the dataset we train on didn't have atoms with more than 4 neighbors, we made this choice to speed up the code. In principle, the code can be adapted for something like a pentavalent phosphorus, but this wasn't a priority for us.

We can't deal with disconnected fragments (i.e. there is a "." in the SMILES).

This code will work poorly for macrocycles.

To ensure correct predictions, ALL tetrahedral chiral centers must be specified. There's probably a way to automate the specification of "rigid" chiral centers (e.g. in a fused ring), which I'll hopefully figure out soon, but I'm grad student with limited time :(

Feedback and collaboration

Code like this doesn't improve without feedback from the community. If you have comments/suggestions, please reach out to us! We're always happy to chat and provide input on how you can take this method to the next level.

Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023