Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

Overview

SuperGAT

Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision, International Conference on Learning Representations (ICLR), 2021.

Notice

The documented SuperGATConv layer with an example has been merged to the PyTorch Geometric's main branch.

This repository is based on torch==1.4.0+cu100 and torch-geometric==1.4.3, which are somewhat outdated at this point (Feb 2021). If you are using recent PyTorch/CUDA/PyG, we would recommend using the PyG's. If you want to run codes in this repository, please follow #installation.

Installation

# In SuperGAT/
bash install.sh ${CUDA, default is cu100}
  • If you have any trouble installing PyTorch Geometric, please install PyG's dependencies manually.
  • Codes are tested with python 3.7.6 and nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 image.
  • PYG's FAQ might be helpful.

Basics

  • The main train/test code is in SuperGAT/main.py.
  • If you want to see the SuperGAT layer in PyTorch Geometric MessagePassing grammar, refer to SuperGAT/layer.py.
  • If you want to see hyperparameter settings, refer to SuperGAT/args.yaml and SuperGAT/arguments.py.

Run

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES
 
...

## RESULTS SUMMARY ##
best_test_perf: 0.853 +- 0.003
best_test_perf_at_best_val: 0.851 +- 0.004
best_val_perf: 0.825 +- 0.003
test_perf_at_best_val: 0.849 +- 0.004
## RESULTS DETAILS ##
best_test_perf: [0.851, 0.853, 0.857, 0.852, 0.858, 0.852, 0.847]
best_test_perf_at_best_val: [0.851, 0.849, 0.855, 0.852, 0.858, 0.848, 0.844]
best_val_perf: [0.82, 0.824, 0.83, 0.826, 0.828, 0.824, 0.822]
test_perf_at_best_val: [0.851, 0.844, 0.853, 0.849, 0.857, 0.848, 0.844]
Time for runs (s): 173.85422565042973

The default setting is 7 runs with different random seeds. If you want to change this number, change num_total_runs in the main block of SuperGAT/main.py.

For ogbn-arxiv, use SuperGAT/main_ogb.py.

GPU Setting

There are three arguments for GPU settings (--num-gpus-total, --num-gpus-to-use, --gpu-deny-list). Default values are from the author's machine, so we recommend you modify these values from SuperGAT/args.yaml or by the command line.

  • --num-gpus-total (default 4): The total number of GPUs in your machine.
  • --num-gpus-to-use (default 1): The number of GPUs you want to use.
  • --gpu-deny-list (default: [1, 2, 3]): The ids of GPUs you want to not use.

If you have four GPUs and want to use the first (cuda:0),

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES \
    --num-gpus-total 4 \
    --gpu-deny-list 1 2 3

Model (--model-name)

Type Model name
GCN GCN
GraphSAGE SAGE
GAT GAT
SuperGATGO GAT
SuperGATDP GAT
SuperGATSD GAT
SuperGATMX GAT

Dataset (--dataset-class, --dataset-name)

Dataset class Dataset name
Planetoid Cora
Planetoid CiteSeer
Planetoid PubMed
PPI PPI
WikiCS WikiCS
WebKB4Univ WebKB4Univ
MyAmazon Photo
MyAmazon Computers
PygNodePropPredDataset ogbn-arxiv
MyCoauthor CS
MyCoauthor Physics
MyCitationFull Cora_ML
MyCitationFull CoraFull
MyCitationFull DBLP
Crocodile Crocodile
Chameleon Chameleon
Flickr Flickr

Custom Key (--custom-key)

Type Custom key (General) Custom key (for PubMed) Custom key (for ogbn-arxiv)
SuperGATGO EV1O8-ES EV1-500-ES -
SuperGATDP EV2O8-ES EV2-500-ES -
SuperGATSD EV3O8-ES EV3-500-ES EV3-ES
SuperGATMX EV13NSO8-ES EV13NSO8-500-ES EV13NS-ES

Other Hyperparameters

See SuperGAT/args.yaml or run $ python3 SuperGAT/main.py --help.

Code Base

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022