QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

Overview

QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

  • TL;DR: QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

QueryInst: Parallelly Supervised Mask Query for Instance Segmentation,

by Yuxin Fang*, Shusheng Yang*, Xinggang Wang†, Yu Li, Chen Fang, Ying Shan, Bin Feng, Wenyu Liu.

(*) equal contribution, (†) corresponding author.

arXiv technical report (arXiv 2105.01928)

QueryInst

  • This repo serves as the official implementation for QueryInst, based on mmdetection and built upon Sparse R-CNN & DETR. Implantations based on Detectron2 will be released in the near future.

  • This project is under active development, we will extend QueryInst to a wide range of instance-level recognition tasks.

Updates

[06/05/2021] 🌟 QueryInst training and inference code has been released!

Getting Started

python setup.py develop
  • Prepare datasets:
mkdir data && cd data
ln -s /path/to/coco coco
  • Training QueryInst with single GPU:
python tools/train.py configs/queryinst/queryinst_r50_fpn_1x_coco.py
  • Training QueryInst with multi GPUs:
./tools/dist_train.sh configs/queryinst/queryinst_r50_fpn_1x_coco.py 8
  • Test QueryInst on COCO val set with single GPU:
python tools/test.py configs/queryinst/queryinst_r50_fpn_1x_coco.py PATH/TO/CKPT.pth --eval bbox segm
  • Test QueryInst on COCO val set with multi GPUs:
./tools/dist_test.sh configs/queryinst/queryinst_r50_fpn_1x_coco.py PATH/TO/CKPT.pth 8 --eval bbox segm

Main Results on COCO val

Configs Aug. Weights Box AP Mask AP
QueryInst_R50_3x_300_queries 480 ~ 800, w/ Crop - 46.9 41.4
QueryInst_R101_3x_300_queries 480 ~ 800, w/ Crop - 48.0 42.4
QueryInst_X101-DCN_3x_300_queries 480 ~ 800, w/ Crop - 50.3 44.2

Citation

If you find our paper and code useful in your research, please consider giving a star and citation ?? :

@article{QueryInst,
  title={QueryInst: Parallelly Supervised Mask Query for Instance Segmentation},
  author={Fang, Yuxin and Yang, Shusheng and Wang, Xinggang and Li, Yu and Fang, Chen and Shan, Ying and Feng, Bin and Liu, Wenyu},
  journal={arXiv preprint arXiv:2105.01928},
  year={2021}
}

TODO

  • QueryInst training and inference code.
  • QueryInst based on Detectron2 toolbox will be released in the near future.
  • QueryInst configurations for Cityscapes and YouTube-VIS.
  • QueryInst pretrain weights.
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022