[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Overview

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22)

Picture1

Preview version paper of this work is available at: https://arxiv.org/abs/2112.02853

Qualitative results and comparisons with previous SOTAs are available at: https://youtu.be/X6BsS3t3wnc

This repo is a preview version. More details will be added later.

Abstract

Error propagation is a general but crucial problem in online semi-supervised video object segmentation. We aim to suppress error propagation through a correction mechanism with high reliability.

The key insight is to disentangle the correction from the conventional mask propagation process with reliable cues.

We introduce two modulators, propagation and correction modulators, to separately perform channel-wise re-calibration on the target frame embeddings according to local temporal correlations and reliable references respectively. Specifically, we assemble the modulators with a cascaded propagation-correction scheme. This avoids overriding the effects of the reliable correction modulator by the propagation modulator.

Although the reference frame with the ground truth label provides reliable cues, it could be very different from the target frame and introduce uncertain or incomplete correlations. We augment the reference cues by supplementing reliable feature patches to a maintained pool, thus offering more comprehensive and expressive object representations to the modulators. In addition, a reliability filter is designed to retrieve reliable patches and pass them in subsequent frames.

Our model achieves state-of-the-art performance on YouTube-VOS18/19 and DAVIS17-Val/Test benchmarks. Extensive experiments demonstrate that the correction mechanism provides considerable performance gain by fully utilizing reliable guidance.

Requirements

This docker image may contain some redundent packages. A more light-weight one will be generated later.

docker image: xxiaoh/vos:10.1-cudnn7-torch1.4_v3

Citation

If you find this work is useful for your research, please consider citing:

@misc{xu2021reliable,
  title={Reliable Propagation-Correction Modulation for Video Object Segmentation}, 
  author={Xiaohao Xu and Jinglu Wang and Xiao Li and Yan Lu},
  year={2021},
  eprint={2112.02853},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Credit

CFBI: https://github.com/z-x-yang/CFBI

Deeplab: https://github.com/VainF/DeepLabV3Plus-Pytorch

GCT: https://github.com/z-x-yang/GCT

Acknowledgement

Firstly, the author would like to thank Rex for his insightful viewpoints about VOS during e-mail discussion! Also, this work is largely built upon the codebase of CFBI. Thanks for the author of CFBI to release such a wonderful code repo for further work to build upon!

Related impressive works in VOS

AOT [NeurIPS 2021]: https://github.com/z-x-yang/AOT

STCN [NeurIPS 2021]: https://github.com/hkchengrex/STCN

MiVOS [CVPR 2021]: https://github.com/hkchengrex/MiVOS

SSTVOS [CVPR 2021]: https://github.com/dukebw/SSTVOS

GraphMemVOS [ECCV 2020]: https://github.com/carrierlxk/GraphMemVOS

CFBI [ECCV 2020]: https://github.com/z-x-yang/CFBI

STM [ICCV 2019]: https://github.com/seoungwugoh/STM

FEELVOS [CVPR 2019]: https://github.com/kim-younghan/FEELVOS

Useful websites for VOS

The 1st Large-scale Video Object Segmentation Challenge: https://competitions.codalab.org/competitions/19544#learn_the_details

The 2nd Large-scale Video Object Segmentation Challenge - Track 1: Video Object Segmentation: https://competitions.codalab.org/competitions/20127#learn_the_details

The Semi-Supervised DAVIS Challenge on Video Object Segmentation @ CVPR 2020: https://competitions.codalab.org/competitions/20516#participate-submit_results

DAVIS: https://davischallenge.org/

YouTube-VOS: https://youtube-vos.org/

Papers with code for Semi-VOS: https://paperswithcode.com/task/semi-supervised-video-object-segmentation

Welcome to comments and discussions!!

Xiaohao Xu: [email protected]

Owner
Xiaohao Xu
Xiaohao Xu
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022