[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Overview

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22)

Picture1

Preview version paper of this work is available at: https://arxiv.org/abs/2112.02853

Qualitative results and comparisons with previous SOTAs are available at: https://youtu.be/X6BsS3t3wnc

This repo is a preview version. More details will be added later.

Abstract

Error propagation is a general but crucial problem in online semi-supervised video object segmentation. We aim to suppress error propagation through a correction mechanism with high reliability.

The key insight is to disentangle the correction from the conventional mask propagation process with reliable cues.

We introduce two modulators, propagation and correction modulators, to separately perform channel-wise re-calibration on the target frame embeddings according to local temporal correlations and reliable references respectively. Specifically, we assemble the modulators with a cascaded propagation-correction scheme. This avoids overriding the effects of the reliable correction modulator by the propagation modulator.

Although the reference frame with the ground truth label provides reliable cues, it could be very different from the target frame and introduce uncertain or incomplete correlations. We augment the reference cues by supplementing reliable feature patches to a maintained pool, thus offering more comprehensive and expressive object representations to the modulators. In addition, a reliability filter is designed to retrieve reliable patches and pass them in subsequent frames.

Our model achieves state-of-the-art performance on YouTube-VOS18/19 and DAVIS17-Val/Test benchmarks. Extensive experiments demonstrate that the correction mechanism provides considerable performance gain by fully utilizing reliable guidance.

Requirements

This docker image may contain some redundent packages. A more light-weight one will be generated later.

docker image: xxiaoh/vos:10.1-cudnn7-torch1.4_v3

Citation

If you find this work is useful for your research, please consider citing:

@misc{xu2021reliable,
  title={Reliable Propagation-Correction Modulation for Video Object Segmentation}, 
  author={Xiaohao Xu and Jinglu Wang and Xiao Li and Yan Lu},
  year={2021},
  eprint={2112.02853},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Credit

CFBI: https://github.com/z-x-yang/CFBI

Deeplab: https://github.com/VainF/DeepLabV3Plus-Pytorch

GCT: https://github.com/z-x-yang/GCT

Acknowledgement

Firstly, the author would like to thank Rex for his insightful viewpoints about VOS during e-mail discussion! Also, this work is largely built upon the codebase of CFBI. Thanks for the author of CFBI to release such a wonderful code repo for further work to build upon!

Related impressive works in VOS

AOT [NeurIPS 2021]: https://github.com/z-x-yang/AOT

STCN [NeurIPS 2021]: https://github.com/hkchengrex/STCN

MiVOS [CVPR 2021]: https://github.com/hkchengrex/MiVOS

SSTVOS [CVPR 2021]: https://github.com/dukebw/SSTVOS

GraphMemVOS [ECCV 2020]: https://github.com/carrierlxk/GraphMemVOS

CFBI [ECCV 2020]: https://github.com/z-x-yang/CFBI

STM [ICCV 2019]: https://github.com/seoungwugoh/STM

FEELVOS [CVPR 2019]: https://github.com/kim-younghan/FEELVOS

Useful websites for VOS

The 1st Large-scale Video Object Segmentation Challenge: https://competitions.codalab.org/competitions/19544#learn_the_details

The 2nd Large-scale Video Object Segmentation Challenge - Track 1: Video Object Segmentation: https://competitions.codalab.org/competitions/20127#learn_the_details

The Semi-Supervised DAVIS Challenge on Video Object Segmentation @ CVPR 2020: https://competitions.codalab.org/competitions/20516#participate-submit_results

DAVIS: https://davischallenge.org/

YouTube-VOS: https://youtube-vos.org/

Papers with code for Semi-VOS: https://paperswithcode.com/task/semi-supervised-video-object-segmentation

Welcome to comments and discussions!!

Xiaohao Xu: [email protected]

Owner
Xiaohao Xu
Xiaohao Xu
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022