Chinese Advertisement Board Identification(Pytorch)

Overview

Chinese-Advertisement-Board-Identification(Pytorch)

1.Propose method

The model

  • We first calibrate the direction of the image according to the given coordinates by points transformation algorithm to magnify the font of the characters, which improves the prediction result of the model. Next, we apply pre-trained Yolov5 to predict the box location of the characters, and use sort box location algorithm to sort the order of those located characters. With this, we can not only obviate the problem of string disorder, but also filter out images that contains no characters using Yolov5. Then, we perform two types of classification for each located character box. The first type of classification is to determine whether it is a character. If it is not, we directly label it as "###"; and if it is a character, we perform the second classifiation to recognize the character in the located box.

  • This is our proposed training method for CNN that improves the precision on character recognition by incorporating ArcMargin, FCN, and Focal loss. By using these two types of loss to determine the backend, the classification model can further distinguish the difference between features (The choice of CNN model can be optional to any classification architecture).

Data augmentation

  • Random Mosaic
Input image Mosaic size = 2 Mosaic size = 4 Mosaic size = 6 Mosaic size = 8
  • Random scale Resize
Input image 56x56 to 224x224 38x38 to 224x224 28x28 to 224x224 18x18 to 224x224
  • Random ColorJitter
Input image brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5 brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5

2.Demo

  • Four points transformation
Input image After transformation
  • Predicted results
Input image YoloV5 Text detection Text classification
image image 電機冷氣檢驗
祥準鐘錶時計
薑母鴨
薑母鴨
###
###

3.Competition results

  • Our proposed method combined the training model with ArcMargin and Focal loss

  • The training of the two models, SEResNet101 and EfficientNet, has not ended before the end of the competition. Therefore, the above results which are the 46th epoch could be more accurately

  • Final score = 1_N.E.D - (1 - Precision)

  • Arc Focal loss = ArcMargin + Focal loss(γ=2) 、 Class Focal loss = FCN + Focal loss(γ=1.5)

  • Public dataset scores

Model type Loss function Final score Precision Recall Normalization Edit Distance(N.E.D.)
ResNeXt50 Cross entropy 0.69742 0.9447 0.8884 0.7527
ResNeXt101 Cross entropy 0.71608 0.9631 0.9076 0.7530
SEResNet101 Cross entropy 0.80967 0.9984 0.9027 0.8112
SEResNet101 Focal loss(γ=2) 0.82015 0.9986 0.9032 0.8215
SEResNet101 Arc Focal loss(γ=2)
+ Class Focal loss(γ=1.5)
0.85237 0.9740 0.9807 0.8784
EfficientNet-b5 Arc Focal loss(γ=2)
+ Class Focal loss(γ=1.5)
0.82234 0.9797 0.9252 0.8426
  • Public dataset ensemble scores
Model type Final score Precision Recall Normalization Edit Distance(N.E.D.)
ResNeXt50+ResNeXt101 0.82532 0.9894 0.9046 0.8359
ResNeXt50+ResNeXt101
+SEResNet101
0.86804 0.9737 0.9759 0.8943
ResNeXt50+ResNeXt101
+SEResNet101+EfficientNet-b5
0.87167 0.9740 0.9807 0.8977
  • Private dataset ensemble scores
Model type Final score Precision Recall Normalization Edit Distance(N.E.D.)
ResNeXt50+ResNeXt101
+SEResNet101
0.8682 0.9718 0.9782 0.8964
ResNeXt50+ResNeXt101
+EfficientNet-b5
0.8727 0.9718 0.9782 0.9009
ResNeXt50+ResNeXt101
+SEResNet101+EfficientNet-b5
0.8741 0.9718 0.9782 0.9023

4.Computer equipment

  • System: Windows10、Ubuntu20.04

  • Pytorch version: Pytorch 1.7 or higher

  • Python version: Python 3.6

  • Testing:
    CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
    RAM: 16GB
    GPU: NVIDIA GeForce RTX 2060 6GB

  • Training:
    CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
    RAM: 256GB
    GPU: NVIDIA GeForce RTX 3090 24GB

5.Download pretrained models

6.Testing

Model evaulation -- Get the predicted results by inputting images

  • First, move your path to the yoloV5
$ cd ./yoloV5
  • Please download the pre-trained model before you run "Text_detection.py" file. Then, put your images under the path ./yoloV5/example/.
  • There are some examples under the folder example. The predicted results will save on the path ./yoloV5/out/ after you run the code. The predicted results are on the back of filename. If no words or the images are not clear enough, the model will predict "###". Otherwise, it will show the predicted results.
  • Note!! You need to verify that the input image is the same as the given image under the folder "example". If the image is not a character image, you could provide the four points coordinate of the image, then deploy the function of image transform, which is in the file "dataset_preprocess.py".
  • Note!! The model of the text classification does not add the model of "EfficientNet-b5". If you would like to use it, you need to revise the code and de-comment by yourself.
$ python3 Text_detection.py

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.75, device='', img_size=480, iou_thres=0.6, save_conf=False, save_txt=False, source='./example', view_img=False, weights='./runs/train/expm/weights/best.pt')
Fusing layers... 
image 1/12 example\img_10000_2.png: 160x480 6 Texts, Done. (0.867s) 法國康達石油
image 2/12 example\img_10000_3.png: 160x480 6 Texts, Done. (0.786s) 電機冷氣檢驗
image 3/12 example\img_10000_5.png: 96x480 7 Texts, Done. (0.998s) 見達汽車修理廠
image 4/12 example\img_10002_5.png: 64x480 12 Texts, Done. (1.589s) 幼兒民族芭蕾成人有氧韻律
image 5/12 example\img_10005_1.png: 480x96 6 Texts, Done. (0.790s) 中山眼視光學
image 6/12 example\img_10005_3.png: 480x352 Done. (0.000s) ###
image 7/12 example\img_10005_6.png: 480x288 Done. (0.000s) ###
image 8/12 example\img_10005_8.png: 480x288 1 Texts, Done. (0.137s) ###
image 9/12 example\img_10013_3.png: 480x96 6 Texts, Done. (0.808s) 祥準鐘錶時計
image 10/12 example\img_10017_1.png: 480x64 7 Texts, Done. (0.917s) 國立臺灣博物館
image 11/12 example\img_10028_5.png: 160x480 3 Texts, Done. (0.399s) 薑母鴨
image 12/12 example\img_10028_6.png: 480x128 3 Texts, Done. (0.411s) 薑母鴨

Image transform

  • Change the main of "dataset_preprocess.py" to execute the function "image_transform()"
def image_transform(path, points):
    img = cv2.imread(path)
    out = four_point_transform(img, points)
    cv2.imwrite(path[:-4] + '_transform.jpg', out)

if __name__ in "__main__":
    # train_valid_get_imageClassification()   # 生成的資料庫辨識是否是文字的 function
    # train_valid_get_imageChar()             # 生成的資料庫辨識該圖像是哪個文字的 function
    # train_valid_detection_get_bbox()         # 生成的資料庫判斷文字位置的 function
    # private_img_get_preprocess()            # 生成預處理的資料庫,之後利用 yolo 抓出char位置,最後放入模型辨識
    # test_bbox()                             # 查看BBOX有沒有抓對
    image_transform('./img_10065.jpg', np.array([ [169,593],[1128,207],[1166,411],[142,723] ])) # 將輸入圖片與要截取的四邊座標轉成正面

6.Training

  • The folder should be put under the fold "./dataset/" first, then unzip the .zip file provided by the official
  • The training data preprocessing can be running after you unzip the file.
$ python3 dataset_preprocess.py

YoloV5 training and evaluation

  • Follow the instructions provided by the Yolov5 official to do the pre-processing of the data, and you can train after you finish.
  • The data pre-processing of Yolov5 has been written in the function "train_valid_detection_get_bbox()", which is in the file dataset_preprocess.py. Therefore, you can get the training data after you run the file dataset_preprocess.py.
  • After that, move you path to ./yoloV5/.
$ cd ./yoloV5
  • After modifying the hyperparameters under the file train.py, you can start training. Please download the [pre-trained models](# 5.Download pretrained models) before training.
$ python3 train.py
  • After training, You need to modify the path of the model to evaluate the performance of the model. And tune the parameters of "conf-thres" and "iou-thres" values according to your own model. We evaluate our model using the private dataset. If you want to use another dataset, please modify the path by yourself.
$ python3 detect.py
  • Finally, please move path to classification.
$ cd ../classification
  • Run the results of the text classification. Please modify the code if you revise any path or filename
$ python3 Ensemble.py

Text or ### classification Training

  • Please move path to classification.
$ cd ./classification
  • The data pre-processing of classification has beeb written in the function "train_valid_get_imageClassification()", which is in the file dataset_preprocess.py. Therefore, you can get the training data after you run the file dataset_preprocess.py.
  • Model training.
$ python3 ClassArcTrainer.py
  • You need to modify the path by yourself to fine-tune the last classifier. use the best model which is in the folder ./modelsArc/ and modify the 111th line of ClassArcTest.py. After that, you can run the code.
$ python3 ClassArcTest.py

Text recognition Training

  • Please move to path classification
$ cd ./classification
  • The data pre-processing of classification has beeb written in the function "train_valid_get_imageChar()", which is in the file dataset_preprocess.py. Therefore, you can get the training data after you run the file dataset_preprocess.py.
  • Train the model we provided.
$ python3 CharArcTrainer2.py
  • Train the model of resnext50 or resnext101.
$ python3 CharTrainer.py
  • **Please run the code of detect.py to extract the word bounding box before evaluation. After that, you should modify the path in Ensemble.py to use the model you trained.

References

[1] https://github.com/ultralytics/yolov5
[2] https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
[3] https://github.com/lukemelas/EfficientNet-PyTorch
[4] https://github.com/ronghuaiyang/arcface-pytorch/blob/master/models/metrics.py
[5] https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
[6] https://tw511.com/a/01/30937.html
[7] Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4690-4699).
[8] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).
[9] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).

Owner
Li-Wei Hsiao
Li-Wei Hsiao
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022