AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

Overview

AnimalAI 3

AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research towards unlocking cognitive capabilities and better understanding the space of possible minds. It is designed to facilitate testing across animals, humans, and AI.

This Repo

This repo contains the AnimalAI environment, some introductory python scripts for interacting with it, as well as the 900 tasks which were used in the original Animal-AI Olympics competition (and some others for demonstration purposes). Details of the tasks can be found on the AAI website where they can also be played and competition entries watched.

The environment is built using Unity ml-agents release 2.1.0-exp.1 (python version 0.27.0).

The AnimalAI environment and packages are currently only tested on linux (Ubuntu 20.04.2 LTS) with python 3.8 but have been reported working with python 3.6+, other linux distros and Windows and Mac.

The Unity Project for the environment is available here.

Installing

To get started you will need to:

  1. Clone this repo.
  2. Install the animalai python package and requirements by running pip install -e animalai from the root folder.
  3. Download the environment for your system:
OS Environment link
Linux v3.0
Mac v3.0
Windows v3.0

(Old v2.x versions can be found here)

Unzip the entire content of the archive to the (initially empty) env folder. On linux you may have to make the file executable by running chmod +x env/AnimalAI.x86_64. Note that the env folder should contain the AnimalAI.exe/.x86_84/.app depending on your system and any other folders in the same directory in the zip file.

Tutorials and Examples

Some example scripts to get started can be found in the examples folder. The following docs provide information for some common uses of the environment.

Manual Control

If you launch the environment directly from the executable or through the play.py script it will launch in player mode. Here you can control the agent with the following:

Keyboard Key Action
W move agent forwards
S move agent backwards
A turn agent left
D turn agent right
C switch camera
R reset environment

Citing

If you use the Animal-AI environment in your work you can cite the environment paper:

Crosby, M., Beyret, B., Shanahan, M., Hernández-Orallo, J., Cheke, L. & Halina, M.. (2020). The Animal-AI Testbed and Competition. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, in Proceedings of Machine Learning Research 123:164-176 Available here.

 @InProceedings{pmlr-v123-crosby20a, 
    title = {The Animal-AI Testbed and Competition}, 
    author = {Crosby, Matthew and Beyret, Benjamin and Shanahan, Murray and Hern\'{a}ndez-Orallo, Jos\'{e} and Cheke, Lucy and Halina, Marta}, 
    booktitle = {Proceedings of the NeurIPS 2019 Competition and Demonstration Track}, 
    pages = {164--176}, 
    year = {2020}, 
    editor = {Hugo Jair Escalante and Raia Hadsell}, 
    volume = {123}, 
    series = {Proceedings of Machine Learning Research}, 
    month = {08--14 Dec}, 
    publisher = {PMLR}, 
} 

Unity ML-Agents

The Animal-AI Olympics was built using Unity's ML-Agents Toolkit.

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A General Platform for Intelligent Agents. arXiv preprint arXiv:1809.02627

Further the documentation for mlagents should be consulted if you want to make any changes.

Version History

  • v3.0 Note that due to the changes to controls and graphics agents trained on previous versions might not preform the same
    • Updated agent handling. The agent now comes to a stop more quickly when not moving forwards or backwards and accelerates slightly faster.
    • Added new objects, spawners, signs, goal types (see doc)
    • Added 3 animal skins to the player character.
    • Updated graphics for many objects. Default shading on many previously plain objects make it easier to determine location(s)/velocity.
    • Many improvements to documentation and examples.
    • Upgraded to Mlagents 2.1.0-exp.1 (ml-agents python version 0.27.0)
    • Fixed various bugs.
  • v2.2.3
    • Now you can specify multiple different arenas in a single yml config file ant the environment will cycle through them each time it resets
  • v2.2.2
    • Low quality version with improved fps. (will work on further improvments to graphics & fps later)
  • v2.2.1
    • Improve UI scaling wrt. screen size
    • Fixed an issue with cardbox objects spawning at the wrong sizes
    • Fixed an issue where the environment would time out after the time period even when health > 0 (no longer intended behaviour)
    • Improved Death Zone shader for weird Zone sizes
  • v2.2.0 Health and Basic Scripts
    • Switched to health-based system (rewards remain the same).
    • Updated overlay in play mode.
    • Allow 3D hot zones and death zones and make them 3D by default in old configs.
    • Added rewards that grow/decay (currently not configurable but will be added in next update).
    • Added basic Gym Wrapper.
    • Added basic heuristic agent for benchmarking and testing.
    • Improved all other python scripts.
    • Fixed a reset environment bug when resetting during training.
    • Added the ability to set the DecisionPeriod (frameskip) when instantiating and environment.
  • v2.1.1 bugfix
    • Fixed raycast length being less then diagonal length of standard arena
  • v2.1 beta release
    • Upgraded to ML-Agents release 2 (0.26.0)
    • New features
      • Added raycast observations
      • Added agent global position to observations
Owner
Matthew Crosby
Matthew Crosby
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022