Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

Overview

fastquant πŸ€“

Build Status Code style: black License: MIT Downloads

Bringing backtesting to the mainstream

fastquant allows you to easily backtest investment strategies with as few as 3 lines of python code. Its goal is to promote data driven investments by making quantitative analysis in finance accessible to everyone.

To do this type of analysis without coding, you can also try out Hawksight, which was just recently launched! πŸ˜„

If you want to interact with us directly, you can also reach us on the Hawksight discord. Feel free to ask about fastquant in the #feedback-suggestions and #bug-report channels.

Features

  1. Easily access historical stock data
  2. Backtest and optimize trading strategies with only 3 lines of code

* - Both Yahoo Finance and Philippine stock data data are accessible straight from fastquant

Check out our blog posts in the fastquant website and this intro article on Medium!

Installation

Python

pip install fastquant
or
python -m pip install fastquant

Get stock data

All symbols from Yahoo Finance and Philippine Stock Exchange (PSE) are accessible via get_stock_data.

Python

from fastquant import get_stock_data
df = get_stock_data("JFC", "2018-01-01", "2019-01-01")
print(df.head())

#           dt  close
#   2019-01-01  293.0
#   2019-01-02  292.0
#   2019-01-03  309.0
#   2019-01-06  323.0
#   2019-01-07  321.0

Get crypto data

The data is pulled from Binance, and all the available tickers are found here.

Python

from fastquant import get_crypto_data
crypto = get_crypto_data("BTC/USDT", "2018-12-01", "2019-12-31")
crypto.head()

#             open    high     low     close    volume
# dt                                                          
# 2018-12-01  4041.27  4299.99  3963.01  4190.02  44840.073481
# 2018-12-02  4190.98  4312.99  4103.04  4161.01  38912.154790
# 2018-12-03  4160.55  4179.00  3827.00  3884.01  49094.369163
# 2018-12-04  3884.76  4085.00  3781.00  3951.64  48489.551613
# 2018-12-05  3950.98  3970.00  3745.00  3769.84  44004.799448

Backtest trading strategies

Simple Moving Average Crossover (15 day MA vs 40 day MA)

Daily Jollibee prices from 2018-01-01 to 2019-01-01

from fastquant import backtest
backtest('smac', df, fast_period=15, slow_period=40)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 102272.90

Want to do this without coding at all?

If you want to make this kind of analysis even more simple without having to code at all (or want to avoid the pain of doing all of the setup required), you can signup for free and try out Hawksight - this new no-code tool I’m building to democratize data driven investments.

Hoping to make these kinds of powerful analyses accessible to more people!

Optimize trading strategies with automated grid search

fastquant allows you to automatically measure the performance of your trading strategy on multiple combinations of parameters. All you need to do is to input the values as iterators (like as a list or range).

Simple Moving Average Crossover (15 to 30 day MA vs 40 to 55 day MA)

Daily Jollibee prices from 2018-01-01 to 2019-01-01

from fastquant import backtest
res = backtest("smac", df, fast_period=range(15, 30, 3), slow_period=range(40, 55, 3), verbose=False)

# Optimal parameters: {'init_cash': 100000, 'buy_prop': 1, 'sell_prop': 1, 'execution_type': 'close', 'fast_period': 15, 'slow_period': 40}
# Optimal metrics: {'rtot': 0.022, 'ravg': 9.25e-05, 'rnorm': 0.024, 'rnorm100': 2.36, 'sharperatio': None, 'pnl': 2272.9, 'final_value': 102272.90}

print(res[['fast_period', 'slow_period', 'final_value']].head())

#	fast_period	slow_period	final_value
#0	15	        40	        102272.90
#1	21	        40	         98847.00
#2	21	        52	         98796.09
#3	24	        46	         98008.79
#4	15	        46	         97452.92

Library of trading strategies

Strategy Alias Parameters
Relative Strength Index (RSI) rsi rsi_period, rsi_upper, rsi_lower
Simple moving average crossover (SMAC) smac fast_period, slow_period
Exponential moving average crossover (EMAC) emac fast_period, slow_period
Moving Average Convergence Divergence (MACD) macd fast_perod, slow_upper, signal_period, sma_period, dir_period
Bollinger Bands bbands period, devfactor
Buy and Hold buynhold N/A
Sentiment Strategy sentiment keyword , page_nums, senti
Custom Prediction Strategy custom upper_limit, lower_limit, custom_column
Custom Ternary Strategy ternary buy_int, sell_int, custom_column

Relative Strength Index (RSI) Strategy

backtest('rsi', df, rsi_period=14, rsi_upper=70, rsi_lower=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 132967.87

Simple moving average crossover (SMAC) Strategy

backtest('smac', df, fast_period=10, slow_period=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 95902.74

Exponential moving average crossover (EMAC) Strategy

backtest('emac', df, fast_period=10, slow_period=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 90976.00

Moving Average Convergence Divergence (MACD) Strategy

backtest('macd', df, fast_period=12, slow_period=26, signal_period=9, sma_period=30, dir_period=10)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 96229.58

Bollinger Bands Strategy

backtest('bbands', df, period=20, devfactor=2.0)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 97060.30

News Sentiment Strategy

Use Tesla (TSLA) stock from yahoo finance and news articles from Business Times

from fastquant import get_yahoo_data, get_bt_news_sentiment
data = get_yahoo_data("TSLA", "2020-01-01", "2020-07-04")
sentiments = get_bt_news_sentiment(keyword="tesla", page_nums=3)
backtest("sentiment", data, sentiments=sentiments, senti=0.2)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 313198.37
# Note: Unfortunately, you can't recreate this scenario due to inconsistencies in the dates and sentiments that is scraped by get_bt_news_sentiment. In order to have a quickstart with News Sentiment Strategy you need to make the dates consistent with the sentiments that you are scraping.

from fastquant import get_yahoo_data, get_bt_news_sentiment
from datetime import datetime, timedelta

# we get the current date and delta time of 30 days
current_date = datetime.now().strftime("%Y-%m-%d")
delta_date = (datetime.now() - timedelta(30)).strftime("%Y-%m-%d")
data = get_yahoo_data("TSLA", delta_date, current_date)
sentiments = get_bt_news_sentiment(keyword="tesla", page_nums=3)
backtest("sentiment", data, sentiments=sentiments, senti=0.2)

Multi Strategy

Multiple registered strategies can be utilized together in an OR fashion, where buy or sell signals are applied when at least one of the strategies trigger them.

df = get_stock_data("JFC", "2018-01-01", "2019-01-01")

# Utilize single set of parameters
strats = { 
    "smac": {"fast_period": 35, "slow_period": 50}, 
    "rsi": {"rsi_lower": 30, "rsi_upper": 70} 
} 
res = backtest("multi", df, strats=strats)
res.shape
# (1, 16)


# Utilize auto grid search
strats_opt = { 
    "smac": {"fast_period": 35, "slow_period": [40, 50]}, 
    "rsi": {"rsi_lower": [15, 30], "rsi_upper": 70} 
} 

res_opt = backtest("multi", df, strats=strats_opt)
res_opt.shape
# (4, 16)

Custom Strategy for Backtesting Machine Learning & Statistics Based Predictions

This powerful strategy allows you to backtest your own trading strategies using any type of model w/ as few as 3 lines of code after the forecast!

Predictions based on any model can be used as a custom indicator to be backtested using fastquant. You just need to add a custom column in the input dataframe, and set values for upper_limit and lower_limit.

The strategy is structured similar to RSIStrategy where you can set an upper_limit, above which the asset is sold (considered "overbought"), and a lower_limit, below which the asset is bought (considered "underbought). upper_limit is set to 95 by default, while lower_limit is set to 5 by default.

In the example below, we show how to use the custom strategy to backtest a custom indicator based on out-of-sample time series forecasts. The forecasts were generated using Facebook's Prophet package on Bitcoin prices.

from fastquant import get_crypto_data, backtest
from fbprophet import Prophet
import pandas as pd
from matplotlib import pyplot as plt

# Pull crypto data
df = get_crypto_data("BTC/USDT", "2019-01-01", "2020-05-31")

# Fit model on closing prices
ts = df.reset_index()[["dt", "close"]]
ts.columns = ['ds', 'y']
m = Prophet(daily_seasonality=True, yearly_seasonality=True).fit(ts)
forecast = m.make_future_dataframe(periods=0, freq='D')

# Predict and plot
pred = m.predict(forecast)
fig1 = m.plot(pred)
plt.title('BTC/USDT: Forecasted Daily Closing Price', fontsize=25)

+1.5%, and sell when it's < -1.5%. df["custom"] = expected_1day_return.multiply(-1) backtest("custom", df.dropna(),upper_limit=1.5, lower_limit=-1.5)">
# Convert predictions to expected 1 day returns
expected_1day_return = pred.set_index("ds").yhat.pct_change().shift(-1).multiply(100)

# Backtest the predictions, given that we buy bitcoin when the predicted next day return is > +1.5%, and sell when it's < -1.5%.
df["custom"] = expected_1day_return.multiply(-1)
backtest("custom", df.dropna(),upper_limit=1.5, lower_limit=-1.5)

See more examples here.

fastquant API

View full list of fastquan API here

Be part of the growing fastquant community

Want to discuss more about fastquant with other users, and our team of developers?

You can reach us on the Hawksight discord. Feel free to ask about fastquant in the #feedback-suggestions and #bug-report channels.

Run fastquant in a Docker Container

>> df.head()">
# Build the image
docker build -t myimage .

# Run the container
docker run -t -d -p 5000:5000 myimage

# Get the container id
docker ps

# SSH into the fastquant container
docker exec -it 
   
     /bin/bash

# Run python and use fastquant
python

>>> from fastquant import get_stock_data
>>> df = get_stock_data("TSLA", "2019-01-01", "2020-01-01")
>>> df.head()

   
Owner
Lorenzo Ampil
co-founder & dev @ Hawksight.co | democratizing smart defi | creator of fastquant | top contributor @flipsidecrypto | πŸ‡΅πŸ‡­ based in πŸ‡ΈπŸ‡¬
Lorenzo Ampil
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer LearningπŸ•΅πŸ»β€β™‚οΈ

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)β€œ.

Artifact β€’ Reproduce Bugs β€’ Quick Start β€’ Installation β€’ Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022