LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

Overview

LWCC: A LightWeight Crowd Counting library for Python

LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models all based on convolutional neural networks: CSRNet, Bayesian crowd counting, DM-Count, and SFANet. The library is based on PyTorch.

Installation

The easiest way to install library LWCC and its prerequisites is to use the package manager pip.

pip install lwcc

Usage

You can import the library and use its functionalities by:

from lwcc import LWCC

Count estimation

Most straightforward way to use the library:

img = "path/to/image"
count = LWCC.get_count(img)

This uses CSRNet pretrained on SHA (default). You can choose a different model pretrained on different data set using:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB")

The result is a float with predicted count.

Large images

Note: By default all images are resized such that the longest side is less than 1000px, preserving the aspect ratio. Otherwise models might perform worse for large images with sparse crowds (counting patterns on shirts, dresses). If you are estimating dense crowds, we recommend you to set the resize_img to False. The call should look like this:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB", resize_img = True)

Multiple images

Library allows prediction of count for multiple images with a single call of get_count. You can simply pass a list of image paths:

img1 = "path/to/image1"
img2 = "path/to/image2"
count = LWCC.get_count([img1, img2])

Result is then a dictionary of pairs image_name : image_count: result

Density map

You can also request a density map by setting flag return_density = True. The result is then a tuple (count, density_map), where density_map is a 2d array with predicted densities. The array is smaller than the input image and its size depends on the model.

import matplotlib.pyplot as plt

count, density = LWCC.get_count(img, return_density = True)

plt.imshow(density)
plt.show()

result_density

This also works for multiple images (list of image paths as input). Result is then a tuple of two dictionaries, where the first dictionary is the same as above (pairs of image_name : image_count) and the second dictionary contains pairs of image_name : density_map.

Loading the model

You can also directly access the PyTorch models by loading them first with the load_model method.

model = LWCC.load_model(model_name = "DM-Count", model_weights = "SHA")

The loaded model is a PyTorch model and you can access its weights as with any other PyTorch model.

You can use it for inference as:

 count = LWCC.get_count(img, model = model)

Models

LWCC currently offers 4 models (CSRNet, Bayesian crowd counting, DM-Count, SFANet) pretrained on Shanghai A, Shanghai B, and UCF-QNRF datasets. The following table shows the model name and MAE / MSE result of the available pretrained models on the test sets.

Model name SHA SHB QNRF
CSRNet 75.44 / 113.55 11.27 / 19.32 Not available
Bay 66.92 / 112.07 8.27 / 13.56 90.43 / 161.41
DM-Count 61.39 / 98.56 7.68 / 12.66 88.97 / 154.11
SFANet Not available 7.05 / 12.18 Not available

Valid options for model_name are written in the first column and thus include: CSRNet, Bay, DM-Count, and SFANet. Valid options for model_weights are written in the first row and thus include: SHA, SHB, and QNRF.

Note: Not all model_weights are supported with all model_names. See the above table for possible combinations.

How does it work?

The goal of crowd counting methods is to determine the number of people present in a particular area. There exist many approaches (detection, regression, density-based approaches), however, since 2015 many convolutional neural network (CNN) based approaches have been proposed. The basic idea behind CNN based approaches is that they normally try to predict the density map from the input image and infer the count from it. These models differ in the use of different backbones, loss functions, additional maps, etc. If you are interested in a particular algorithm, you are welcome to read the paper belonging to the specific model.

FAQ - Frequently asked questions

Can I see some more examples of LWCC in action?

Yes, you can find some examples in Examples.ipynb!

How accurate are the models?

You can see the mean absolute error (MAE) and mean squared error (MSE) of the pretrained models on test sets in section models. We recommend models pretrained on SHA or QNRF for dense crowds, and SHB for sparse crowds.

Is GPU support available?

No, GPU support is currently not supported yet, but is planned for the future version.

Can I load custom weights?

Full support of loading custom pretrained weights is not supported, but is planned in the future version.

Can I train the models myself?

The library does not support training, only inference.

Why are my results bad?

This might depend on the model you use, image size, density or type of the crowd, or the weights that you use. For example, models might often make mistakes for images with a group portrait, as they are trained on images containing crowds on streets, concerts, etc. Using SHAweights on relatively sparse crowds might also give very wrong results. On the other hand, SHB might perform better as the weights were trained on Shanghai B data set, which containts images with relatively sparse crowds. Using high quality images with sparse crowds might also yield bad results, as the algorithms might mistake some textures of clothings for a crowd.

As a rule of thumb, you should use SHB if you are planning on estimating the number of people in images with sparse crowds, and SHA or QNRF for images with dense crowds. Keep in mind that current algorithms predict the density, and there still might be some mistakes. You are welcome to try out different combinations of models and weights and see which one works the best for your problem.

Support

If you like the library please show us your support by ⭐️ starring the project!

If you wish to include your own crowd counting model, please contact us ([email protected] or [email protected]).

Stargazers

Stargazers repo roster for @tersekmatija/lwcc

Citation

This library is a result of a research of CNN Crowd Counting models by Matija Teršek and Maša Kljun. Although the paper has not been published yet, please provide the link to this GitHub repository if you use LWCC in your research.

License

This library is licensed under MIT license (see LICENSE). Licenses of the models wrapped in the library will be inherited, depending on the model you use ( CSRNet, Bayesian crowd counting, DM-Count, and SFANet).

Owner
Matija Teršek
Data Science Master's student
Matija Teršek
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022