AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

Overview

AirPose

AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

iccv_teaser


Check the teaser video

This repository contains the code of AirPose a novel markerless 3D human motion capture (MoCap) system for unstructured, outdoor environments that uses a team of autonomous unmanned aerialvehicles (UAVs) with on-board RGB cameras and computation.

Please clone the repository with the following

git clone https://github.com/robot-perception-group/AirPose.git --recursive


Data can be freely accessed here. Please download the data, and untar it whenever necessary. Content details are following:

  • copenet_synthetic_data.tar.gz - Synthetic dataset
  • copenet_dji_real_data.tar.gz - real dataset
  • hmr_synthetic.tar.gz - Baseline pretrained checkpoint on synthetic data and pkl files for precalculated results
  • copenet_singleview_ckpt.zip - Baseline+Fullcam pretrained checkpoint on synthetic data and pkl files for precalculated results
  • muhmr_synthetic.tar.gz - Baseline+Multiview pretrained checkpoint on synthetic data and pkl files for precalculated results
  • copenet_twoview_synthetic_ckpt.tar.gz - AirPose pretrained checkpoint on synthetic data and pkl files for precalculated results
  • hmr_real_ckpt.zip - Baseline finetuned checkpoint on real data and pkl files for precalculated results
  • copenet_twoview_real_ckpt.zip - AirPose finetuned checkpoint on real data and pkl files for precalculated results
  • SMPLX_to_J14.pkl - Mapping from SMPLX joints to the 14 joints format of openpose. It is used in the method AirPose+.

The code was tested using Python 3.8.

SMPLX code in this repo is a modified version of the official SMLX implementation. Download the SMPLX model weights from here and run the following

# from the download location
unzip models_smplx_v1_1.zip -d models_smplx
unzip models_smplx/models/smplx/smplx_npz.zip -d used_models
rm models_smplx -r

Then copy the content of used_models (just created, with SMPLX_{MALE,FEMALE,NEUTRAL}.npz files) folder into your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx.

You need to register before being able to download the weights.

Now, you may want to create a virtual environment. Please be sure your pip is updated.

Install the necessary requirements with pip install -r requirements.txt. If you don't have a cuda compatible device, change the device to cpu in copenet_real/src/copenet_real/config.py and copenet/src/copenet/config.py.

In those files (copenet_real/src/copenet_real/config.py and copenet/src/copenet/config.py) change LOCAL_DATA_DIR to /global/path/AirPose/copenet/src/copenet/data".

Check out this link to fix the runtime error RuntimeError: Subtraction, the - operator, with a bool tensor is not supported due to the Torchgeometry package.

Install the copenet and copenet_real packages in this repo

pip install -e copenet
pip install -e copenet_real

Download the head and hands indices files form here and place them in AirPose/copenet/src/copenet/data/smplx (MANO_SMPLX_vertex_ids.pkl and SMPL-X__FLAME_vertex_ids.npy).

Synthetic data training

The data to be used is copenet_synthetic_data.tar.gz (here)

Preprocess

To run the code of this repository you first need to preprocess the data using

# from AirPose folder
python copenet/src/copenet/scripts/prepare_aerialpeople_dataset.py /absolute/path/copenet_synthetic

And code can be run by the following (from AirPose/copenet folder):

python src/copenet/copenet_trainer.py --name=test_name --version=test_version --model=muhmr --datapath=/absolute/path/copenet_synthetic --log_dir=path/location/ --copenet_home=/absolute/path/AirPose/copenet --optional-params...

The datapath is the location of the training data.

--model specify the model type between [hmr, muhmr, copnet_singleview, copenet_twoview] which corresponds to the Baseline, Baseline+multi-view, Baseline+Fullcam and AirPose respectively.

Logs will be saved in $log_dir/$name/$version/

optional-params is to be substituted with the copenet_trainer available params as weights, lr..

Evaluation on the synthetic data

For model type [muhmr, copenet_twoview].

cd AirPose/copenet_real

python src/copenet_real/scripts/copenet_synth_res_compile.py "model type" "checkpoint Path" "/path to the dataset"

For model type [hmr, copenet_singleview], the provided checkpoint is trained with an older pytorch lightning version (<=1.2). If you want to use them, install pytorch-lightning<=1.2.

We provide the precalculated outputs on the syntehtic data using these checkpoints.

To generate the metrics, run

cd AirPose/copenet_real

python src/copenet_real/scripts/hmr_synth_res_compile.py "model type" "precalculated results directory Path" "/path to the dataset" "your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx"

Fine-tuning on real dataset

The data to be used is copenet_dji_real_data.tar.gz(here).

Install the human body prior from here and download its pretrained weights (version 2) from here. Set the vposer_weights variable in the .../AirPose/copenet_real/src/copenet_real/config.py file to the absolute path of the downloaded weights (e.g. /home/user/Downloads/V02_05). If you do NOT have a GPU please change human_body_prior/tools/model_loader.py line 68 from state_dict = torch.load(trained_weigths_fname)['state_dict'] to state_dict = torch.load(trained_weigths_fname, map_location=torch.device('cpu'))['state_dict']

Note: for the hmr (Baseline) model pytorch-lightning<=1.2 is required. You might have to recheck requirements, or reinstall the requirements you can find in the main folder of this repo.

Code can be run by the following (from AirPose/copenet_real/ folder)

python src/copenet_real/copenet_trainer.py --name=test_name --version=test_version --model=hmr --datapath=path/location --log_dir=path/location/ --resume_from_checkpoint=/path/to/checkpoint --copenet_home=/absolute/path/AirPose/copenet --optional-params...

The datapath is the location of the training data.

--model specify the model type between [hmr, copenet_twoview] which corresponds to the Baseline, AirPose respectively.

The --resume_from_checkpoint is path to the pretrained checkpoint on the synthetic data.

Evaluation on real data

Install graphviz dependency with pip install graphviz in the same virtual environment.

Following code will generate the plots comparing the results of the baseline method, AirPose and AirPose+ on the real data.

This can be run from AirPose folder.

python copenet_real_data/scripts/bundle_adj.py "path_to_the_real_dataset" \\
"path_to_the_SMPLX_neutral_npz_file" \\
"path_to_vposer_folder" \\
"path_to_the_hmr_checkpoint_directory" \\
"path_to_the_airpose_precalculated_res_on_realdata_pkl" \\
"path_to_the_SMPLX_to_j14_mapping_pkl_file" \\
"type_of_data(train/test)" 

Note that:

  • The SMPLX_neutral_npz_file should be in your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx.
  • The vposer_folder should be in the vposer_weights folder that you downloaded to finetune on the real data
  • The hmr checkpoint is either being generated by you or downloaded from here
  • The precalculated_res_on_realdata_pkl can be found within the same archive you downloaded above. More on how to compute them yourself below.
  • The SMPLX_to_j14_pkl can be found here.

The evaluation code above needs precalculated results on the real data which are provided with the dataset. If you want to calculate them yourself, run the following code and save the variable outputs in a pkl file when a breakpoint is hit. The pkl files provided with the data are generated in the same way. For AirPose

python copenet_real/src/copenet_real/scripts/copenet_real_res_compile.py "checkpoint Path" "/path to the dataset"

For Baseline

python copenet_real/src/copenet_real/scripts/hmr_real_res_compile.py "checkpoint Path" "/path to the dataset"

Testing the client-server synchronization mechanism

To this end you need to install ros-{melodic,noetic} in your pc (Ubuntu 18.04-20.04).

Please follow the instructions that you can find here

After that you need to install the following dependencies:

sudo add-apt-repository ppa:joseluisblancoc/mrpt-stable

Navigate to your catkin_ws folder (e.g. AirPose/catkin_ws) and run:

touch src/aircap/packages/optional/basler_image_capture/Grab/CATKIN_IGNORE
touch src/aircap/packages/optional/ptgrey_image_capture/Grab/CATKIN_IGNORE

this applies to ros-melodic

Firstly, checkout the AirPose branch ros-melodic.

Be sure to update the submodule (first command).

git submodule update 
sudo apt install libmrpt-dev mrpt-apps
cd /your/path/AirPose/catkin_ws
touch src/aircap/packages/3rdparty/mrpt_bridge/CATKIN_IGNORE
touch src/aircap/packages/3rdparty/pose_cov_ops/CATKIN_IGNORE
sudo apt install -y ros-melodic-octomap-msgs ros-melodic-cv-camera ros-melodic-marker-msgs ros-melodic-mrpt-msgs ros-melodic-octomap-ros ros-melodic-mrpt-bridge ros-melodic-mrpt1

this applies to ros-noetic

sudo apt install libmrpt-poses-dev libmrpt-obs-dev libmrpt-graphs-dev libmrpt-maps-dev libmrpt-slam-dev -y
sudo apt install -y ros-noetic-octomap-msgs ros-noetic-cv-camera ros-noetic-marker-msgs ros-noetic-mrpt-msgs ros-noetic-octomap-ros ros-noetic-mrpt2

Then you can run catkin_make from the catkin_ws folder to build the whole workspace.

To run the client-server architecture you need:

  • An image topic
  • A camera_info topic
  • A feedback topic with the region of interest information

To test the code you can do the following.

  • Download the dji rosbags that you can find here either from the test_bag or train_bag folders.
  • Download the checkpoint airpose_asv3_same_hparams_checkpoint.tar.gz from here

In separated terminals (with the workspace sourced) run:

  • roscore

  • rosparam set use_sim_time true

  • Launch the first client (i.e. the first "drone") with roslaunch airpose_client one_robot.launch host:=127.0.0.1 port:=9901 feedback_topic:=info img_topic:=camera/image_raw camera_info_topic:=camera/info robotID:=1 reproject:=false groundtruth:=true, with host you can change the server IP address, port must correspond, feedback_topic must contain the ROI and is of type neural_network_detector::NeuralNetworkFeedback, robotID should be either 1 or 2, reproject is used to avoid a reprojection to different intrisics parameters and groundtruth:=true is used to provide {min_x, max_x, min_y, max_y} in the ROI message (description below)

  • Launch the second client roslaunch airpose_client one_robot.launch host:=127.0.0.1 port:=9902 feedback_topic:=info img_topic:=camera/image_raw camera_info_topic:=camera/info robotID:=2 reproject:=false groundtruth:=true

  • Launch the servers, default IP 127.0.0.1

    Using the virtualenv/python3.8 installations with previous requirements installed

    • Firstly change folder to cd AirPose/catkin_ws/src/aircap/packages/flight/airpose_server
      • First server, run python server.py -p 9901 -m /path/to/the/file.ckpt, note that -p port needs to match the client_1 port
      • Second server, run python server.py -p 9902 -m /path/to/the/file.ckpt, note that -p port needs to match the client_2 port
  • To visualize the results you need to install some dependencies

    Using the virtualenv/python3.8 installations with previous requirements installed.

    • run pip install meshcat rospkg
    • Change folder to cd AirPose/catkin_ws/src/aircap/packages/flight/airpose_server and run pip install -e smplx.
    • The visualization node can then be run with python copenet_rosViz.py /machine_1/step3_pub /absolute/path/to/smplx/models or python copenet_rosViz.py /machine_2/step3_pub /absolute/path/to/smplx/models. The path is most likely /path/to/AirPose/copenet/src/copenet/data/smplx
  • You can either use the complete bag files with rosbag play d*_BGR.bag --clock --pause

    or create smaller (overlapping) bags using the split.zsh script that you find in both folders. This split will create 5 split from each bag. Afterwards, simply run rosbag play d*_split1.bag --clock --pause, where split{n-th} is the n-th split of the longer sequence. The splits have some overlap between them.

At this point you should be able to see play the rosbag in the way you prefer.

The published topics, for each machine, are:

  • machine_x/step1_pub, the results of the first step of the network, read by the other machine
  • machine_x/step2_pub, the results of the second step of the network, read by the other machine
  • machine_x/step3_pub, the final results of machine_x

The ROI message can be either used as "grountruth" box with the following structure:

ymin = ymin
ymax = ymax
ycenter = xmin
xcenter = xmax

Or as a more general box where you specify the center and the height of the box. In that case a 3:4 aspect ratio is considered.

ymin = ymin
ymax = ymax
xcenter = x_center_of_the_bb
ycenter = y_center_of_the_bb

You can also create your bag and provide your own data to the tool. To that end you can check the code available here that uses a csv with the needed information (image paths, bounding boxes, and camera info) to build the bags.

Note that this is no different than running the inference manually, except for the fact that this runs at 4FPS and has the synchronization procedure enabled as explained in the paper.

Owner
Robot Perception Group
Robot Perception Group is a reaearch group at the Perceiving Systems Department of the Max Planck Institue for Intelligent Systems, Tübingen, Germany
Robot Perception Group
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022