AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

Overview

AirPose

AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

iccv_teaser


Check the teaser video

This repository contains the code of AirPose a novel markerless 3D human motion capture (MoCap) system for unstructured, outdoor environments that uses a team of autonomous unmanned aerialvehicles (UAVs) with on-board RGB cameras and computation.

Please clone the repository with the following

git clone https://github.com/robot-perception-group/AirPose.git --recursive


Data can be freely accessed here. Please download the data, and untar it whenever necessary. Content details are following:

  • copenet_synthetic_data.tar.gz - Synthetic dataset
  • copenet_dji_real_data.tar.gz - real dataset
  • hmr_synthetic.tar.gz - Baseline pretrained checkpoint on synthetic data and pkl files for precalculated results
  • copenet_singleview_ckpt.zip - Baseline+Fullcam pretrained checkpoint on synthetic data and pkl files for precalculated results
  • muhmr_synthetic.tar.gz - Baseline+Multiview pretrained checkpoint on synthetic data and pkl files for precalculated results
  • copenet_twoview_synthetic_ckpt.tar.gz - AirPose pretrained checkpoint on synthetic data and pkl files for precalculated results
  • hmr_real_ckpt.zip - Baseline finetuned checkpoint on real data and pkl files for precalculated results
  • copenet_twoview_real_ckpt.zip - AirPose finetuned checkpoint on real data and pkl files for precalculated results
  • SMPLX_to_J14.pkl - Mapping from SMPLX joints to the 14 joints format of openpose. It is used in the method AirPose+.

The code was tested using Python 3.8.

SMPLX code in this repo is a modified version of the official SMLX implementation. Download the SMPLX model weights from here and run the following

# from the download location
unzip models_smplx_v1_1.zip -d models_smplx
unzip models_smplx/models/smplx/smplx_npz.zip -d used_models
rm models_smplx -r

Then copy the content of used_models (just created, with SMPLX_{MALE,FEMALE,NEUTRAL}.npz files) folder into your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx.

You need to register before being able to download the weights.

Now, you may want to create a virtual environment. Please be sure your pip is updated.

Install the necessary requirements with pip install -r requirements.txt. If you don't have a cuda compatible device, change the device to cpu in copenet_real/src/copenet_real/config.py and copenet/src/copenet/config.py.

In those files (copenet_real/src/copenet_real/config.py and copenet/src/copenet/config.py) change LOCAL_DATA_DIR to /global/path/AirPose/copenet/src/copenet/data".

Check out this link to fix the runtime error RuntimeError: Subtraction, the - operator, with a bool tensor is not supported due to the Torchgeometry package.

Install the copenet and copenet_real packages in this repo

pip install -e copenet
pip install -e copenet_real

Download the head and hands indices files form here and place them in AirPose/copenet/src/copenet/data/smplx (MANO_SMPLX_vertex_ids.pkl and SMPL-X__FLAME_vertex_ids.npy).

Synthetic data training

The data to be used is copenet_synthetic_data.tar.gz (here)

Preprocess

To run the code of this repository you first need to preprocess the data using

# from AirPose folder
python copenet/src/copenet/scripts/prepare_aerialpeople_dataset.py /absolute/path/copenet_synthetic

And code can be run by the following (from AirPose/copenet folder):

python src/copenet/copenet_trainer.py --name=test_name --version=test_version --model=muhmr --datapath=/absolute/path/copenet_synthetic --log_dir=path/location/ --copenet_home=/absolute/path/AirPose/copenet --optional-params...

The datapath is the location of the training data.

--model specify the model type between [hmr, muhmr, copnet_singleview, copenet_twoview] which corresponds to the Baseline, Baseline+multi-view, Baseline+Fullcam and AirPose respectively.

Logs will be saved in $log_dir/$name/$version/

optional-params is to be substituted with the copenet_trainer available params as weights, lr..

Evaluation on the synthetic data

For model type [muhmr, copenet_twoview].

cd AirPose/copenet_real

python src/copenet_real/scripts/copenet_synth_res_compile.py "model type" "checkpoint Path" "/path to the dataset"

For model type [hmr, copenet_singleview], the provided checkpoint is trained with an older pytorch lightning version (<=1.2). If you want to use them, install pytorch-lightning<=1.2.

We provide the precalculated outputs on the syntehtic data using these checkpoints.

To generate the metrics, run

cd AirPose/copenet_real

python src/copenet_real/scripts/hmr_synth_res_compile.py "model type" "precalculated results directory Path" "/path to the dataset" "your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx"

Fine-tuning on real dataset

The data to be used is copenet_dji_real_data.tar.gz(here).

Install the human body prior from here and download its pretrained weights (version 2) from here. Set the vposer_weights variable in the .../AirPose/copenet_real/src/copenet_real/config.py file to the absolute path of the downloaded weights (e.g. /home/user/Downloads/V02_05). If you do NOT have a GPU please change human_body_prior/tools/model_loader.py line 68 from state_dict = torch.load(trained_weigths_fname)['state_dict'] to state_dict = torch.load(trained_weigths_fname, map_location=torch.device('cpu'))['state_dict']

Note: for the hmr (Baseline) model pytorch-lightning<=1.2 is required. You might have to recheck requirements, or reinstall the requirements you can find in the main folder of this repo.

Code can be run by the following (from AirPose/copenet_real/ folder)

python src/copenet_real/copenet_trainer.py --name=test_name --version=test_version --model=hmr --datapath=path/location --log_dir=path/location/ --resume_from_checkpoint=/path/to/checkpoint --copenet_home=/absolute/path/AirPose/copenet --optional-params...

The datapath is the location of the training data.

--model specify the model type between [hmr, copenet_twoview] which corresponds to the Baseline, AirPose respectively.

The --resume_from_checkpoint is path to the pretrained checkpoint on the synthetic data.

Evaluation on real data

Install graphviz dependency with pip install graphviz in the same virtual environment.

Following code will generate the plots comparing the results of the baseline method, AirPose and AirPose+ on the real data.

This can be run from AirPose folder.

python copenet_real_data/scripts/bundle_adj.py "path_to_the_real_dataset" \\
"path_to_the_SMPLX_neutral_npz_file" \\
"path_to_vposer_folder" \\
"path_to_the_hmr_checkpoint_directory" \\
"path_to_the_airpose_precalculated_res_on_realdata_pkl" \\
"path_to_the_SMPLX_to_j14_mapping_pkl_file" \\
"type_of_data(train/test)" 

Note that:

  • The SMPLX_neutral_npz_file should be in your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx.
  • The vposer_folder should be in the vposer_weights folder that you downloaded to finetune on the real data
  • The hmr checkpoint is either being generated by you or downloaded from here
  • The precalculated_res_on_realdata_pkl can be found within the same archive you downloaded above. More on how to compute them yourself below.
  • The SMPLX_to_j14_pkl can be found here.

The evaluation code above needs precalculated results on the real data which are provided with the dataset. If you want to calculate them yourself, run the following code and save the variable outputs in a pkl file when a breakpoint is hit. The pkl files provided with the data are generated in the same way. For AirPose

python copenet_real/src/copenet_real/scripts/copenet_real_res_compile.py "checkpoint Path" "/path to the dataset"

For Baseline

python copenet_real/src/copenet_real/scripts/hmr_real_res_compile.py "checkpoint Path" "/path to the dataset"

Testing the client-server synchronization mechanism

To this end you need to install ros-{melodic,noetic} in your pc (Ubuntu 18.04-20.04).

Please follow the instructions that you can find here

After that you need to install the following dependencies:

sudo add-apt-repository ppa:joseluisblancoc/mrpt-stable

Navigate to your catkin_ws folder (e.g. AirPose/catkin_ws) and run:

touch src/aircap/packages/optional/basler_image_capture/Grab/CATKIN_IGNORE
touch src/aircap/packages/optional/ptgrey_image_capture/Grab/CATKIN_IGNORE

this applies to ros-melodic

Firstly, checkout the AirPose branch ros-melodic.

Be sure to update the submodule (first command).

git submodule update 
sudo apt install libmrpt-dev mrpt-apps
cd /your/path/AirPose/catkin_ws
touch src/aircap/packages/3rdparty/mrpt_bridge/CATKIN_IGNORE
touch src/aircap/packages/3rdparty/pose_cov_ops/CATKIN_IGNORE
sudo apt install -y ros-melodic-octomap-msgs ros-melodic-cv-camera ros-melodic-marker-msgs ros-melodic-mrpt-msgs ros-melodic-octomap-ros ros-melodic-mrpt-bridge ros-melodic-mrpt1

this applies to ros-noetic

sudo apt install libmrpt-poses-dev libmrpt-obs-dev libmrpt-graphs-dev libmrpt-maps-dev libmrpt-slam-dev -y
sudo apt install -y ros-noetic-octomap-msgs ros-noetic-cv-camera ros-noetic-marker-msgs ros-noetic-mrpt-msgs ros-noetic-octomap-ros ros-noetic-mrpt2

Then you can run catkin_make from the catkin_ws folder to build the whole workspace.

To run the client-server architecture you need:

  • An image topic
  • A camera_info topic
  • A feedback topic with the region of interest information

To test the code you can do the following.

  • Download the dji rosbags that you can find here either from the test_bag or train_bag folders.
  • Download the checkpoint airpose_asv3_same_hparams_checkpoint.tar.gz from here

In separated terminals (with the workspace sourced) run:

  • roscore

  • rosparam set use_sim_time true

  • Launch the first client (i.e. the first "drone") with roslaunch airpose_client one_robot.launch host:=127.0.0.1 port:=9901 feedback_topic:=info img_topic:=camera/image_raw camera_info_topic:=camera/info robotID:=1 reproject:=false groundtruth:=true, with host you can change the server IP address, port must correspond, feedback_topic must contain the ROI and is of type neural_network_detector::NeuralNetworkFeedback, robotID should be either 1 or 2, reproject is used to avoid a reprojection to different intrisics parameters and groundtruth:=true is used to provide {min_x, max_x, min_y, max_y} in the ROI message (description below)

  • Launch the second client roslaunch airpose_client one_robot.launch host:=127.0.0.1 port:=9902 feedback_topic:=info img_topic:=camera/image_raw camera_info_topic:=camera/info robotID:=2 reproject:=false groundtruth:=true

  • Launch the servers, default IP 127.0.0.1

    Using the virtualenv/python3.8 installations with previous requirements installed

    • Firstly change folder to cd AirPose/catkin_ws/src/aircap/packages/flight/airpose_server
      • First server, run python server.py -p 9901 -m /path/to/the/file.ckpt, note that -p port needs to match the client_1 port
      • Second server, run python server.py -p 9902 -m /path/to/the/file.ckpt, note that -p port needs to match the client_2 port
  • To visualize the results you need to install some dependencies

    Using the virtualenv/python3.8 installations with previous requirements installed.

    • run pip install meshcat rospkg
    • Change folder to cd AirPose/catkin_ws/src/aircap/packages/flight/airpose_server and run pip install -e smplx.
    • The visualization node can then be run with python copenet_rosViz.py /machine_1/step3_pub /absolute/path/to/smplx/models or python copenet_rosViz.py /machine_2/step3_pub /absolute/path/to/smplx/models. The path is most likely /path/to/AirPose/copenet/src/copenet/data/smplx
  • You can either use the complete bag files with rosbag play d*_BGR.bag --clock --pause

    or create smaller (overlapping) bags using the split.zsh script that you find in both folders. This split will create 5 split from each bag. Afterwards, simply run rosbag play d*_split1.bag --clock --pause, where split{n-th} is the n-th split of the longer sequence. The splits have some overlap between them.

At this point you should be able to see play the rosbag in the way you prefer.

The published topics, for each machine, are:

  • machine_x/step1_pub, the results of the first step of the network, read by the other machine
  • machine_x/step2_pub, the results of the second step of the network, read by the other machine
  • machine_x/step3_pub, the final results of machine_x

The ROI message can be either used as "grountruth" box with the following structure:

ymin = ymin
ymax = ymax
ycenter = xmin
xcenter = xmax

Or as a more general box where you specify the center and the height of the box. In that case a 3:4 aspect ratio is considered.

ymin = ymin
ymax = ymax
xcenter = x_center_of_the_bb
ycenter = y_center_of_the_bb

You can also create your bag and provide your own data to the tool. To that end you can check the code available here that uses a csv with the needed information (image paths, bounding boxes, and camera info) to build the bags.

Note that this is no different than running the inference manually, except for the fact that this runs at 4FPS and has the synchronization procedure enabled as explained in the paper.

Owner
Robot Perception Group
Robot Perception Group is a reaearch group at the Perceiving Systems Department of the Max Planck Institue for Intelligent Systems, Tübingen, Germany
Robot Perception Group
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022