PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

Related tags

Deep LearningSGPA
Overview

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

This is the PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation by Kai Chen and Qi Dou.

intro

Abstract

Category-level 6D object pose estimation aims to predict the position and orientation for unseen objects, which plays a pillar role in many scenarios such as robotics and augmented reality. The significant intra-class variation is the bottleneck challenge in this task yet remains unsolved so far. In this paper, we take advantage of category prior to overcome this problem by innovating a structure-guided prior adaptation scheme to accurately estimate 6D pose for individual objects. Different from existing prior based methods, given one object and its corresponding category prior, we propose to leverage their structure similarity to dynamically adapt the prior to the observed object. The prior adaptation intrinsically associates the adopted prior with different objects, from which we can accurately reconstruct the 3D canonical model of the specific object for pose estimation. To further enhance the structure characteristic of objects, we extract low-rank structure points from the dense object point cloud, therefore more efficiently incorporating sparse structural information during prior adaptation. Extensive experiments on CAMERA25 and REAL275 benchmarks demonstrate significant performance improvement.

Requirements

  • Linux (tested on Ubuntu 18.04)
  • Python 3.6+
  • CUDA 10.0
  • PyTorch 1.1.0

Installation

Conda virtual environment

We recommend using conda to setup the environment.

If you have already installed conda, please use the following commands.

conda create -n sgpa python=3.6
conda activate sgpa
pip install -r requirements.txt

Build PointNet++

cd SGPA/pointnet2/pointnet2
python setup.py install

Build nn_distance

cd SGPA/lib/nn_distance
python setup.py install

Dataset

Download camera_train, camera_val, real_train, real_test, ground-truth annotations and mesh models provided by NOCS.

Then, organize and preprocess these files following SPD. For a quick evaluation, we provide the processed testing data for REAL275. You can download it here and organize the testing data as follows:

SGPA
├── data
│   └── Real
│       ├──test
│       └──test_list.txt
└── results
    └── mrcnn_results
        └──real_test

Evaluation

Please download our trained model here and put it in the 'SGPA/model' directory. Then, you can have a quick evaluation on the REAL275 dataset using the following command.

bash eval.sh

Train

In order to train the model, remember to download the complete dataset, organize and preprocess the dataset properly at first.

train.py is the main file for training. You can simply start training using the following command.

bash train.sh

Citation

If you find the code useful, please cite our paper.

@inproceedings{chen2021sgpa,
  title={Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation},
  author={Chen, Kai and Dou, Qi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2773--2782},
  year={2021}
}

Any questions, please feel free to contact Kai Chen ([email protected]).

Acknowledgment

The dataset is provided by NOCS. Our code is developed based on SPD and Pointnet2.PyTorch.

Owner
Chen Kai
Chen Kai
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023