This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

Overview

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

It includes /bert, which is the original BERT repository modified to be weight prunable. (And to use gradient checkpointing, if you need that. This can be disabled by setting a unix environment variable DISABLE_GRAD_CHECKPOINT=True. This only works during fine-tuning, not during pre-training.)

I am currently in the process of converting these experiments into a ducttape workflow, so things are a little unstable right now.

Things that have not been converted to ducttape:

  • Anything in tables/
  • Anything in graphs/

If you need all the experiments from the paper, check out this commit. It's very messy, so be prepared to read the code. I will not be releasing a guide to run that code, since it will be made obselete by the ducttape workflow.

Configuration

pip install -r requirements.txt

To pre-train, you will need a GPU with at least 12 GB of GPU RAM. I've been using Titan RTX's via Univa Grid Engine. If you don't like this setup, you will need to modify tapes/submitters.tape and/or main.tconf.

You'll also need the Wikipedia corpus and BookCorpus, which can be retrieved with scripts/download_wiki.sh or scripts/download_bookcorpus.sh, respectively. GLUE data can be retrieved by running scripts/get_glue.py.

You will need to update tapes/link_data.tape to point to dataset locations.

You will also need to update main.tconf to point to the location of your repository on disk (so ducttape knows where to find packages).

AFAIK, no one besides me has used this code. If you have trouble, please open an issue and I'll do what I can to help out.

Most experiments are run using

ducttape main.tape -C main.tconf -p main
Owner
Mitchell Gordon
Mitchell Gordon
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022