Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Overview

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

In this repo, you will find the instructions on how to request the data set used to perform the experiments of the aforementioned paper. We manually annotated from scratch a subset of 450 images from the UFBA-UESC Dental Images Deep data set, which comprises 1500 panoramic dental radiographs. We consider that this new data set evolves a previously published data set: DNS Panoramic Images. Therefore, we refer to this new data set as the DNS Panoramic Images v2, where DNS stands for Detection, Numbering, and Segmentation. We presented our results at the 17th International Symposium on Medical Information Processing and Analysis (SIPAIM), and our paper was among the finalists of the best paper award. To be notified of code releases, new data sets, and errata, please watch this repo.

Data set statistics

The data set comprises 450 panoramic images, split into six folds, each containing 75 images. The first five folds were used for cross-validation, while the remaining one constituted the test data set. Therefore, we strongly recommend using fold number 6 (fold-06) as the test data set, so your results can be compared to ours. The annotations are in six JSON files (one for each fold) in the COCO format. We cropped all images to the new 1876x1036 dimensions and converted them to PNG image files. The table below summarizes the data used according to image categories. These categories group the images according to the presence of 32 teeth, restoration, and dental appliances, revealing the high variability of the images. Categories 5 and 6 are reserved for patients with dental implants and more than 32 teeth, respectively. Spoiler: Watch this repo for soon to be published updates.

Category 32 Teeth Restoration Appliance Number and Inst. Segm.
1 ✔️ ✔️ ✔️ 24
2 ✔️ ✔️ 66
3 ✔️ ✔️ 14
4 ✔️ 41
5 Implants 36
6 More than 32 teeth 51
7 ✔️ ✔️ 35
8 ✔️ 136
9 ✔️ 13
10 34
Total 450

Citation

If you use this data set, please cite:

L. Pinheiro, B. Silva, B. Sobrinho, F. Lima, P. Cury, L. Oliveira, “Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays,” in Symposium on Medical Information Processing and Analysis (SIPAIM). SPIE, 2021.

@inproceedings{pinheiro2021numbering,
  title={Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays},
  author={Pinheiro, Laís and Silva, Bernardo and Sobrinho, Brenda and Lima, Fernanda and Cury, Patrícia and Oliveira, Luciano.}
  booktitle={Symposium on Medical Information Processing and Analysis (SIPAIM)},
  year={2021},
  organization={SPIE}
}

Previous Works

This data set and its corresponding paper are a continuation of other works of our group. Please, consider reading and citing:

  • B. Silva, L. Pinheiro, L. Oliveira, and M. Pithon, “A study on tooth segmentation and numbering using end-to-end deep neural networks,” in Conference on Graphics, Patterns and Images. IEEE, 2020.
@inproceedings{silva2020study,
  title={A study on tooth segmentation and numbering using end-to-end deep neural networks},
  author={Silva, Bernardo and Pinheiro, Laís and Oliveira, Luciano and Pithon, Matheus}
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  year={2020},
  organization={IEEE}
}
  • G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep instance segmentation of teeth in panoramic X-ray images,” in Conference on Graphics, Patterns and Images. IEEE, 2018.
@inproceedings{jader2018deep,
  title={Deep instance segmentation of teeth in panoramic X-ray images},
  author={Jader, Gil and Fontineli, Jefferson and Ruiz, Marco and Abdalla, Kalyf and Pithon, Matheus and Oliveira, Luciano},
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  pages={400--407},
  year={2018},
  organization={IEEE}
}
  • G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, Patterns and Images. vol. 107, pp. 15-31, 2018.
@article{silva2018automatic,
  title={Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives},
  author={Silva, Gil and Oliveira, Luciano and Pithon, Matheus},
  journal={Expert Systems with Applications},
  volume={107},
  pages={15--31},
  year={2018},
  publisher={Elsevier}
}

Demonstration

Follow the provided jupyter notebook (demo.ipynb) to get a quick sense of the data set. The conversions.py file defines useful functions to visualize the annotations.

Request the Data Set

Copy the text below in a PDF file, fill out the fields in the text header, and sign it at the end. Please send an e-mail to [email protected] to receive a link to download the DNS Panoramic Images v2 data set with the PDF in attachment. The e-mail must be sent from a professor's valid institutional account:

Subject: Request to download the DNS Panoramic Images v2.

"Name: [your first and last name]

Affiliation: [university where you work]

Department: [your department]

Current position: [your job title]

E-mail: [must be the e-mail at the above-mentioned institution]

I have read and agreed to follow the terms and conditions below: The following conditions define the use of the DNS Panoramic Images v2:

This data set is provided "AS IS" without any express or implied warranty. Although every effort has been made to ensure accuracy, IvisionLab does not take any responsibility for errors or omissions;

Without the expressed permission of IvisionLab, any of the following will be considered illegal: redistribution, modification, and commercial usage of this data set in any way or form, either partially or in its entirety;

All images in this data set are only allowed for demonstration in academic publications and presentations;

This data set will only be used for research purposes. I will not make any part of this data set available to a third party. I'll not sell any part of this data set or make any profit from its use.

[your signature]"

P.S. A link to the data set file will be sent as soon as possible.

Owner
Intelligent Vision Research Lab
Computer Vision and Image Pattern Recognition repository
Intelligent Vision Research Lab
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022