LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Overview

Package Description

The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide a data-driven solution. Based on an observation dataset including 3091 spectra from 361 individual SNe Ia, we trained LSTM neural networks to learn from the spectroscopic time-series data of type Ia supernovae. The model enables the construction of spectral sequences from spectroscopic observations with very limited time coverage.

This repository is associated to the paper "Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review)".

Installation

One can install any desired version of snlstm from Github https://github.com/thomasvrussell/snlstm:

python setup.py install

Additional dependencies

  • R : In order to reduce the data dimension, we use Functional Principal Component Analysis (FPCA) to parameterize supernova spectra before feeding them into neural networks. The FPCA parameterization and FPCA reconstruction are achieved by the fpca package in R programming language. One can install them, e.g., on CentOS

    $ yum install R
    R > install.packages("fpca")
    
  • TensorFlow : tensorflow is required to load a given LSTM model and make the spectral predictions. The default LSTM model in this repository is trained on an enviornment with tensorflow 1.14.0. To avoid potential incompatiability issues casued by different tensorflow versions, we recommend users to install the same version via Conda

    conda install -c anaconda tensorflow=1.14.0
    
  • PYPHOT (optional) : pyphot is a portable package to compute synthetic photometry of a spectrum with given filter. In our work, the tool was used to correct the continuum component of a supernova spectrum so that its synthetic photometry could be in line with the observed light curves. One may consider to install the package if such color calibration is necessary. We recommend users to install the latest version from Github (pyphot 1.1)

    pip install git+https://github.com/mfouesneau/pyphot
    

Download archival datasets

snlstm allows users to access to the following archival datasets

[1] A spectral-observation dataset : it is comprised of 3091 observed spectra from 361 SNe Ia, largely contributed from CfA (Blondin et al. 2012), BSNIP (Silverman et al. 2012), CSP (Folatelli et al. 2013) and Supernova Polarimetry Program (Wang & Wheeler 2008; Cikota et al. 2019a; Yang et al. 2020).
[2] A spectral-template dataset : it includes 361 spectral templates, each of them (covering -15 to +33d with wavelength from 3800 to 7200 A) was generated from the available spectroscopic observations of an individual SN via a LSTM neural network model.
[3] An auxiliary photometry dataset : it provides the B & V light curves of these SNe (in total, 196 available), that were used to calibrate the synthetic B-V color of the observed spectra.

These datasets are stored on Zenodo platform, one can download the related files (~ 2GB) through the Zenodo page: https://doi.org/10.5281/zenodo.5637790.

Quick start guide

We prepared several jupyter notebooks as quick tutorials to use our package in a friendly way.

[*] 1-Access_to_Archival_ObservationData.ipynb : this notebook is to show how to access to the spectral-observation dataset and the auxiliary photometry dataset.
[†] 2-Access_to_Archival_TemplateData.ipynb : one can obtain the LSTM generated spectral time sequences in the spectral-template dataset following this notebook.
[‡] 3-SpecData_Process_Example.ipynb : the notebook demonstrates the pre-processing of the spectroscopic data described in our paper, including smooth, rebinning, lines removal and color calibration, etc.
[§] 4-LSTM_Predictions_on_New_SN.ipynb : the notebook provides a guide for users who want apply our LSTM model on very limited spectroscopic data of newly discovered SNe Ia. In this notebook, we use SN 2016coj, a well-observed SN Ia from the latest BSNIP data release, as an example.
[¶] 5-LSTM_Estimate_Spectral_Phase.ipynb : our neural network is trained based on the spectral data with known phases, however, it is still possible to apply the model to the spectra without any prior phase knownlege. The idea is wrong given phase of input spectrum will degrade the predictive accuracy of our method, that is to say, we can find the best-fit phase of input spectrum by minimizing the accuacy of prediction for itself. This notebook is to show how to estimate spectral phase via our model. For the case of SN 2016coj in the notebook, the estimation errors are around 0.5 - 2.0d.

Publications use our method

  • SN2018agk: A prototypical Type Ia Supernova with a smooth power-law rise in Kepler (K2) (Qinan Wang, et al., 2021, ApJ, see Figure 5 & 6).

Todo list

  • Support spectral sequence with arbitrary timesteps as input. (current model only accepts spectral pair inputs.)
  • Support more flexible wavelength range for input spectra. (current model is trained on spectra with uniform wavelength range from 3800 to 7200 A.)

Common issues

TBD

Development

The latest source code can be obtained from https://github.com/thomasvrussell/snlstm.

When submitting bug reports or questions via the issue tracker, please include the following information:

  • OS platform.
  • Python version.
  • Tensorflow version.
  • Version of snlstm.

Cite

Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review).

You might also like...
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Deep learning based hand gesture recognition using LSTM and MediaPipie.
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

A3C LSTM  Atari with Pytorch plus A3G design
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Releases(v1.1.2)
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022