Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

Overview

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation.

Installation

Our dependencies are fully specified in Pipfile, which can be supplied to pipenv to install the environment. One failsafe approach is to install pipenv in a fresh virtual environment, then run pipenv install in this directory. Note the Pipfile specifies our Python 3.9 development environment; most experiments were run in an identical environment under Python 3.7 instead.

Difficulties with CUDA versions meant we had to manually install PyTorch and Torchvision rather than use pipenv --- the corresponding lines in Pipfile may need adjustment for your use case. Alternatively, use the list of dependencies as a guide to what to install yourself with pip, or use the full dump of our development environment in final_requirements.txt.

Datasets may not be bundled with the repository, but are expected to be found at locations specified in datasets.py, preprocessed into single PyTorch tensors of all the input and output data (generally data/<dataset>/data.pt and data/<dataset>/targets.pt).

Configuration

Training code is controlled with YAML configuration files, as per the examples in configs/. Generally one file is required to specify the dataset, and a second to specify the algorithm, using the obvious naming convention. Brief help text is available on the command line, but the meanings of each option should be reasonably self-explanatory.

For Ours (WD+LR), use the file Ours_LR.yaml; for Ours (WD+LR+M), use the file Ours_LR_Momentum.yaml; for Ours (WD+HDLR+M), use the file Ours_HDLR_Momentum.yaml. For Long/Medium/Full Diff-through-Opt, we provide separate configuration files for the UCI cases and the Fashion-MNIST cases.

We provide two additional helper configurations. Random_Validation.yaml copies Random.yaml, but uses the entire validation set to compute the validation loss at each logging step. This allows for stricter analysis of the best-performing run at particular time steps, for instance while constructing Random (3-batched). Random_Validation_BayesOpt.yaml only forces the use of the entire dataset for the very last validation loss computation, so that Bayesian Optimisation runs can access reliable performance metrics without adversely affecting runtime.

The configurations provided match those necessary to replicate the main experiments in our paper (in Section 4: Experiments). Other trials, such as those in the Appendix, will require these configurations to be modified as we describe in the paper. Note especially that our three short-horizon bias studies all require different modifications to the LongDiffThroughOpt_*.yaml configurations.

Running

Individual runs are commenced by executing train.py and passing the desired configuration files with the -c flag. For example, to run the default Fashion-MNIST experiments using Diff-through-Opt, use:

$ python train.py -c ./configs/fashion_mnist.yaml ./configs/DiffThroughOpt.yaml

Bayesian Optimisation runs are started in a similar way, but with a call to bayesopt.py rather than train.py.

For executing multiple runs in parallel, parallel_exec.py may be useful: modify the main function call at the bottom of the file as required, then call this file instead of train.py at the command line. The number of parallel workers may be specified by num_workers. Any configurations passed at the command line are used as a base, to which modifications may be added by override_generator. The latter should either be a function which generates one override dictionary per call (in which case num_repetitions sets the number of overrides to generate), or a function which returns a generator over configurations (in which case set num_repetitions = None). Each configuration override is run once for each of algorithms, whose configurations are read automatically from the corresponding files and should not be explicitly passed at the command line. Finally, main_function may be used to switch between parallel calls to train.py and bayesopt.py as required.

For blank-slate replications, the most useful override generators will be natural_sgd_generator, which generates a full SGD initialisation in the ranges we use, and iteration_id, which should be used with Bayesian Optimisation runs to name each parallel run using a counter. Other generators may be useful if you wish to supplement existing results with additional algorithms etc.

PennTreebank and CIFAR-10 were executed on clusters running SLURM; the corresponding subfolders contain configuration scripts for these experiments, and submit.sh handles the actual job submission.

Analysis

By default, runs are logged in Tensorboard format to the ./runs directory, where Tensorboard may be used to inspect the results. If desired, a descriptive name can be appended to a particular execution using the -n switch on the command line. Runs can optionally be written to a dedicated subfolder specified with the -g switch, and the base folder for logging can be changed with the -l switch.

If more precise analysis is desired, pass the directory containing the desired results to util.get_tags(), which will return a dictionary of the evolution of each logged scalar in the results. Note that this function uses Tensorboard calls which predate its --load_fast option, so may take tens of minutes to return.

This data dictionary can be passed to one of the more involved plotting routines in figures.py to produce specific plots. The script paper_plots.py generates all the plots we use in our paper, and may be inspected for details of any particular plot.

Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023