MDMM - Learning multi-domain multi-modality I2I translation

Related tags

Deep LearningMDMM
Overview

Multi-Domain Multi-Modality I2I translation

Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to the "Diverse Image-to-Image Translation via Disentangled Representations(https://arxiv.org/abs/1808.00948)", ECCV 2018. With the disentangled representation framework, we can learn diverse image-to-image translation among multiple domains. [DRIT]

Contact: Hsin-Ying Lee ([email protected]) and Hung-Yu Tseng ([email protected])

Example Results

Prerequisites

Usage

  • Training
python train.py --dataroot DATAROOT --name NAME --num_domains NUM_DOMAINS --display_dir DISPLAY_DIR --result_dir RESULT_DIR --isDcontent
  • Testing
python test.py --dataroot DATAROOT --name NAME --num_domains NUM_DOMAINS --out_dir OUT_DIR --resume MODEL_DIR --num NUM_PER_IMG

Datasets

We validate our model on two datasets:

  • art: Containing three domains: real images, Monet images, uki-yoe images. Data can be downloaded from CycleGAN website.
  • weather: Containing four domains: sunny, cloudy, snowy, and foggy. Data is randomly selected from the Image2Weather dataset website.

The different domains in a dataset should be placed in folders "trainA, trainB, ..." in the alphabetical order.

Models

  • The pretrained model on the art dataset
bash ./models/download_model.sh art
  • The pretrained model on the weather dataset
bash ./models/download_model.sh weather

Note

  • The feature transformation (i.e. concat 0) is not fully tested since both art and weather datasets do not require shape variations
  • The hyper-parameters matter and are task-dependent. They are not carefully selected yet.
  • Feel free to contact the author for any potential improvement of the code.

Paper

Diverse Image-to-Image Translation via Disentangled Representations
Hsin-Ying Lee*, Hung-Yu Tseng*, Jia-Bin Huang, Maneesh Kumar Singh, and Ming-Hsuan Yang
European Conference on Computer Vision (ECCV), 2018 (oral) (* equal contribution)

Please cite our paper if you find the code or dataset useful for your research.

@inproceedings{DRIT,
  author = {Lee, Hsin-Ying and Tseng, Hung-Yu and Huang, Jia-Bin and Singh, Maneesh Kumar and Yang, Ming-Hsuan},
  booktitle = {European Conference on Computer Vision},
  title = {Diverse Image-to-Image Translation via Disentangled Representations},
  year = {2018}
}
Owner
Hsin-Ying Lee
Hsin-Ying Lee
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022