State of the art Semantic Sentence Embeddings

Overview

Contrastive Tension

State of the art Semantic Sentence Embeddings

Published Paper · Huggingface Models · Report Bug

Overview

This is the official code accompanied with the paper Semantic Re-Tuning via Contrastive Tension.
The paper was accepted at ICLR-2021 and official reviews and responses can be found at OpenReview.

Contrastive Tension(CT) is a fully self-supervised algorithm for re-tuning already pre-trained transformer Language Models, and achieves State-Of-The-Art(SOTA) sentence embeddings for Semantic Textual Similarity(STS). All that is required is hence a pre-trained model and a modestly large text corpus. The results presented in the paper sampled text data from Wikipedia.

This repository contains:

  • Tensorflow 2 implementation of the CT algorithm
  • State of the art pre-trained STS models
  • Tensorflow 2 inference code
  • PyTorch inference code

Requirements

While it is possible that other versions works equally fine, we have worked with the following:

  • Python = 3.6.9
  • Transformers = 4.1.1

Usage

All the models and tokenizers are available via the Huggingface interface, and can be loaded for both Tensorflow and PyTorch:

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')

TF_model = transformers.TFAutoModel.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')
PT_model = transformers.AutoModel.from_pretrained('Contrastive-Tension/RoBerta-Large-CT-STSb')

Inference

To perform inference with the pre-trained models (or other Huggigface models) please see the script ExampleBatchInference.py.
The most important thing to remember when running inference is to apply the attention_masks on the batch output vector before mean pooling, as is done in the example script.

CT Training

To run CT on your own models and text data see ExampleTraining.py for a comprehensive example. This file currently creates a dummy corpus of random text. Simply replace this to whatever corpus you like.

Pre-trained Models

Note that these models are not trained with the exact hyperparameters as those disclosed in the original CT paper. Rather, the parameters are from a short follow-up paper currently under review, which once again pushes the SOTA.

All evaluation is done using the SentEval framework, and shows the: (Pearson / Spearman) correlations

Unsupervised / Zero-Shot

As both the training of BERT, and CT itself is fully self-supervised, the models only tuned with CT require no labeled data whatsoever.
The NLI models however, are first fine-tuned towards a natural language inference task, which requires labeled data.

Model Avg Unsupervised STS STS-b #Parameters
Fully Unsupervised
BERT-Distil-CT 75.12 / 75.04 78.63 / 77.91 66 M
BERT-Base-CT 73.55 / 73.36 75.49 / 73.31 108 M
BERT-Large-CT 77.12 / 76.93 80.75 / 79.82 334 M
Using NLI Data
BERT-Distil-NLI-CT 76.65 / 76.63 79.74 / 81.01 66 M
BERT-Base-NLI-CT 76.05 / 76.28 79.98 / 81.47 108 M
BERT-Large-NLI-CT 77.42 / 77.41 80.92 / 81.66 334 M

Supervised

These models are fine-tuned directly with STS data, using a modified version of the supervised training object proposed by S-BERT.
To our knowledge our RoBerta-Large-STSb is the current SOTA model for STS via sentence embeddings.

Model STS-b #Parameters
BERT-Distil-CT-STSb 84.85 / 85.46 66 M
BERT-Base-CT-STSb 85.31 / 85.76 108 M
BERT-Large-CT-STSb 85.86 / 86.47 334 M
RoBerta-Large-CT-STSb 87.56 / 88.42 334 M

Other Languages

Model Language #Parameters
BERT-Base-Swe-CT-STSb Swedish 108 M

License

Distributed under the MIT License. See LICENSE for more information.

Contact

If you have questions regarding the paper, please consider creating a comment via the official OpenReview submission.
If you have questions regarding the code or otherwise related to this Github page, please open an issue.

For other purposes, feel free to contact me directly at: [email protected]

Acknowledgements

Owner
Fredrik Carlsson
Fredrik Carlsson
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022