code for CVPR paper Zero-shot Instance Segmentation

Overview

Code for CVPR2021 paper

Zero-shot Instance Segmentation

Code requirements

  • python: python3.7
  • nvidia GPU
  • pytorch1.1.0
  • GCC >=5.4
  • NCCL 2
  • the other python libs in requirement.txt

Install

conda create -n zsi python=3.7 -y
conda activate zsi

conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch

pip install cython && pip --no-cache-dir install -r requirements.txt
   
python setup.py develop

Dataset prepare

  • Download the train and test annotations files for zsi from annotations, put all json label file to

    data/coco/annotations/
    
  • Download MSCOCO-2014 dataset and unzip the images it to path:

    data/coco/train2014/
    data/coco/val2014/
    
  • Training:

    • 48/17 split:

         chmod +x tools/dist_train.sh
         ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py 4
      
    • 65/15 split:

      chmod +x tools/dist_train.sh
      ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py 4
      
  • Inference & Evaluate:

    • ZSI task:

      • 48/17 split ZSI task:
        • download 48/17 ZSI model, put it in checkpoints/ZSI_48_17.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py checkpoints/ZSI_48_17.pth 4 --json_out results/zsi_48_17.json
          
        • our results zsi_48_17.bbox.json and zsi_48_17.segm.json can also downloaded from zsi_48_17_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json --types segm
            
      • 65/15 split ZSI task:
        • download 65/15 ZSI model, put it in checkpoints/ZSI_65_15.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./toools/dist_test.sh configs/zsi/65_15/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py checkpoints/ZSI_65_15.pth 4 --json_out results/zsi_65_15.json
          
        • our results zsi_65_15.bbox.json and zsi_65_15.segm.json can also downloaded from zsi_65_15_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json --types segm
            
    • GZSI task:

      • 48/17 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder_gzsi.py checkpoints/ZSI_48_17.pth 4 --json_out results/gzsi_48_17.json
          
        • our results gzsi_48_17.bbox.json and gzsi_48_17.segm.json can also downloaded from gzsi_48_17_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48 --types segm
            
      • 65/15 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/65_15/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh_gzsi.py checkpoints/ZSI_65_15.pth 4 --json_out results/gzsi_65_15.json
          
        • our results gzsi_65_15.bbox.json and gzsi_65_15.segm.json can also downloaded from gzsi_65_15_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65 --types segm
            

License

ZSI is released under MIT License.

Citing

If you use ZSI in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@InProceedings{zhengye2021zsi,
  author  =  {Ye, Zheng and Jiahong, Wu and Yongqiag, Qin and Faen, Zhang and Li, Cui},
  title   =  {Zero-shot Instance Segmentation},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021}
}
Owner
zhengye
CS Phd
zhengye
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022