code for CVPR paper Zero-shot Instance Segmentation

Overview

Code for CVPR2021 paper

Zero-shot Instance Segmentation

Code requirements

  • python: python3.7
  • nvidia GPU
  • pytorch1.1.0
  • GCC >=5.4
  • NCCL 2
  • the other python libs in requirement.txt

Install

conda create -n zsi python=3.7 -y
conda activate zsi

conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch

pip install cython && pip --no-cache-dir install -r requirements.txt
   
python setup.py develop

Dataset prepare

  • Download the train and test annotations files for zsi from annotations, put all json label file to

    data/coco/annotations/
    
  • Download MSCOCO-2014 dataset and unzip the images it to path:

    data/coco/train2014/
    data/coco/val2014/
    
  • Training:

    • 48/17 split:

         chmod +x tools/dist_train.sh
         ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py 4
      
    • 65/15 split:

      chmod +x tools/dist_train.sh
      ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py 4
      
  • Inference & Evaluate:

    • ZSI task:

      • 48/17 split ZSI task:
        • download 48/17 ZSI model, put it in checkpoints/ZSI_48_17.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py checkpoints/ZSI_48_17.pth 4 --json_out results/zsi_48_17.json
          
        • our results zsi_48_17.bbox.json and zsi_48_17.segm.json can also downloaded from zsi_48_17_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json --types segm
            
      • 65/15 split ZSI task:
        • download 65/15 ZSI model, put it in checkpoints/ZSI_65_15.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./toools/dist_test.sh configs/zsi/65_15/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py checkpoints/ZSI_65_15.pth 4 --json_out results/zsi_65_15.json
          
        • our results zsi_65_15.bbox.json and zsi_65_15.segm.json can also downloaded from zsi_65_15_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json --types segm
            
    • GZSI task:

      • 48/17 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder_gzsi.py checkpoints/ZSI_48_17.pth 4 --json_out results/gzsi_48_17.json
          
        • our results gzsi_48_17.bbox.json and gzsi_48_17.segm.json can also downloaded from gzsi_48_17_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48 --types segm
            
      • 65/15 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/65_15/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh_gzsi.py checkpoints/ZSI_65_15.pth 4 --json_out results/gzsi_65_15.json
          
        • our results gzsi_65_15.bbox.json and gzsi_65_15.segm.json can also downloaded from gzsi_65_15_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65 --types segm
            

License

ZSI is released under MIT License.

Citing

If you use ZSI in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@InProceedings{zhengye2021zsi,
  author  =  {Ye, Zheng and Jiahong, Wu and Yongqiag, Qin and Faen, Zhang and Li, Cui},
  title   =  {Zero-shot Instance Segmentation},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021}
}
Owner
zhengye
CS Phd
zhengye
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022