Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Overview

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Result

Introduction

Image super-resolution (SR) is the process of recovering high-resolution (HR) images from low-resolution (LR) images. It is an important class of image processing techniques in computer vision and image processing and enjoys a wide range of real-world applications, such as medical imaging, satellite imaging, surveillance and security, astronomical imaging, amongst others.

With the advancement in deep learning techniques in recent years, deep learning-based SR models have been actively explored and often achieve state-of-the-art performance on various benchmarks of SR. A variety of deep learning methods have been applied to solve SR tasks, ranging from the early Convolutional Neural Networks (CNN) based method to recent promising Generative Adversarial Nets based SR approaches.

A more detailed overview on single image super-resolution is given in this paper.

This repo contains a tensorflow-based implementation of:

Model Architecture

SRResNet

SRResNet adopts the design of ResNet to solve issues with training very deep models. it managed to achieve state-of-the-art performance when it came out. it contains 16 residual blocks and uses mean squared error as a loss function Here’s an overview of the SRResNet architecture:

EDSR

One super-resolution model that follows this high-level architecture is described in the paper Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR). It is a winner of the NTIRE 2017 super-resolution challenge. They further improved the performance by employing a better ResNet structure: Batch Normalization layers are removed, and instead of mean squared error, mean absolute error is used as a loss function. Here’s an overview of the EDSR architecture:

SRGAN

SRGAN further improves the results of SRResNet by fine-tuning its weights so that it can generate high frequency details in the generated image. This is done by training the model in a GAN using Perceptual loss function , which consists of two components:

  • Content Loss: compares deep features extracted from SR and HR images with a pre-trained VGG network. With φi,j we indicate the feature map obtained by the j-th convolution (after activation) before the i-th maxpooling layer within the VGG19 network

Here Wi,j and Hi,j describe the dimensions of the respective feature maps within the VGG network.

  • Adversarial Loss: The GAN descriminator D is optimized for descriminating SR from HR images whereas the generator is optimized for generating more realistic SR images in order to fool the discriminator.

Perceptual loss is the weighted sum of content loss and adversarial loss:

And here's an overview of the discriminator architecture:

This project aims to fine-tune EDSR model instead of SRResNet in the same manner.

Results

Environment setup

# using pip
pip install -r requirements.txt

# using Conda
conda create --name 
   
     --file requirements.txt

   

Training and testing

You can try training the models yourself by executing train.py

python train.py

This will download DIV2K dataset, preprocess it and start training EDSR then fine-tuning it in SRGAN.

If you want to train the model with different dataset, pass its path as an argument.

python train.py 
   

   

the dataset directory should have a 'HR' folder which contains high resolution images, and a 'LR' folder which contains low resolution images.

And if you'd like to test out model on an image, you can execute resolve_image.py and pass the image path as an argument. The output will be saved in the 'results' directory

python resolve_image.py 
   

   
Owner
Interested in Ai, machine learning and data analysis.
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
MohammadReza Sharifi 27 Dec 13, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023