PyTorch implementation of CloudWalk's recent work DenseBody

Overview

densebody_pytorch

PyTorch implementation of CloudWalk's recent paper DenseBody.

Note: For most recent updates, please check out the dev branch.

Update on 20190613 A toy dataset has been released to facilitate the reproduction of this project. checkout PREPS.md for details.

Update on 20190826 A pre-trained model (Encoder/Decoder) has been released to facilitate the reproduction of this project.

paper teaser

Reproduction results

Here is the reproduction result (left: input image; middle: ground truth UV position map; right: estimated UV position map)

Update Notes

  • SMPL official UV map is now supported! Please checkout PREPS.md for details.
  • Code reformating complete! Please refer to data_utils/UV_map_generator.py for more details.
  • Thanks Raj Advani for providing new hand crafted UV maps!

Training Guidelines

Please follow the instructions PREPS.md to prepare your training dataset and UV maps. Then run train.sh or nohup_train.sh to begin training.

Customizations

To train with your own UV map, checkout UV_MAPS.md for detailed instructions.

To explore different network architectures, checkout NETWORKS.md for detailed instructions.

TODO List

  • Creating ground truth UV position maps for Human36m dataset.

    • 20190329 Finish UV data processing.
    • 20190331 Align SMPL mesh with input image.
    • 20190404 Data washing: Image resize to 256*256 and 2D annotation compensation.
    • 20190411 Generate and save UV position map.
      • radvani Hand parsed new 3D UV data
      • Validity checked with minor artifacts (see results below)
      • Making UV_map generation module a separate class.
    • 20190413 Prepare ground truth UV maps for washed dataset.
    • 20190417 SMPL official UV map supported!
    • 20190613 A testing toy dataset has been released!
  • Prepare baseline model training

    • 20190414 Network design, configs, trainer and dataloader
    • 20190414 Baseline complete with first-hand results. Something issue still needs to be addressed.
    • 20190420 Testing with different UV maps.

Authors

Lingbo Yang(Lotayou): The owner and maintainer of this repo.

Raj Advani(radvani): Provide several hand-crafted UV maps and many constructive feedbacks.

Citation

Please consider citing the following paper if you find this project useful.

DenseBody: Directly Regressing Dense 3D Human Pose and Shape From a Single Color Image

Acknowledgements

The network training part is inspired by BicycleGAN

Owner
Lingbo Yang
Math B.S. at PKU, currently pursuing Ph. D. at IDM VCL Love it when 3D meets 2D!
Lingbo Yang
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022