Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Overview

Panoramic BlitzNet

Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Introduction

This repository contains an original implementation of the paper: 'What’s in my Room? Object Recognition on Indoor Panoramic Images' by Julia Guerrero-Viu, Clara Fernandez-Labrador, Cédric Demonceaux and José J. Guerrero. More info can be found in our project page

Our implementation is based on the previous work of Dvornik et al. BlitzNet which code can be found in their webpage

Use Instructions

We recommend the use of a virtual enviroment for the use of this project. (e.g. anaconda)

$ conda new -n envname python=3.8.5 # replace envname with your prefered name

Install Requirements

1. This code has been compiled and tested using:

  • python 3.8.5
  • cuda 10.1
  • cuDNN 7.6
  • TensorFlow 2.3

You are free to try different configurations but we do not ensure it had been tested.

2. Install python requirements:

(envname)$ pip install -r requirements.txt

Download Dataset

SUN360: download

Copy the folder 'dataset' to the folder where you have the repository files.

Download Model

download

Download the folder 'Checkpoints' which includes the model weights and copy it to the folder where you have the repository files.

Test run

Ensure the folders 'dataset' and 'Checkpoints' are in the same folder than the python files.

To run our demo please run:

(envname)$ python3 test.py PanoBlitznet # Runs the test examples and saves results in 'Results' folder

Training and evaluation

If you want to train the model changing some parameters and evaluate the results follow the next steps:

1. Create a TFDS from SUN360:

Do this ONLY if it is the first time using this repository.

Ensure the folder 'dataset' is in the same folder than the python files.

Change the line 86 in sun360.py file with your path to the 'dataset' folder.

(envname)$ cd /path/to/project/folder
(envname)$ tfds build sun360.py # Creates a TFDS (Tensorflow Datasets) from SUN360

2. Train a model:

To train a model change the parameters you want in the config.py file. You are free to try different configurations but we do not ensure it had been tested.

Usage: training_loop.py 
    
    
      [--restore_ckpt]

Options:
	-h --help  Show this screen.
	--restore_ckpt  Restore weights from previous training to continue with the training.

    
   
(envname)$ python3 training_loop.py Example 10

If you want to load a model to train from it (or continue a training) run:

(envname)$ python3 training_loop.py Example 10 --restore_ckpt

Ensure to change in training_loop.py file how the learning rate changes during training to continue your training in a properly way.

3. Evaluate a model:

Loads a saved model and evaluates it.

(envname)$ python3 evaluation.py Example # Calculates mAP, mIoU, Precision and Recall and saves results in 'Results' folder

Contact

License

This software is under GNU General Public License Version 3 (GPLv3), please see GNU License

For commercial purposes, please contact the authors.

Disclaimer

This site and the code provided here are under active development. Even though we try to only release working high quality code, this version might still contain some issues. Please use it with caution.

Owner
Alejandro de Nova Guerrero
Alejandro de Nova Guerrero
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022