Integrated physics-based and ligand-based modeling.

Related tags

Deep Learningcombind
Overview

ComBind

ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction.

Given the chemical structures of several ligands that can bind a given target protein, ComBind solves for a set of poses, one per ligand, that are both highly scored by physics-based docking and display similar interactions with the target protein. ComBind quantifies this vague notion of "similar" by considering a diverse training set of protein complexes and computing the overlap between protein–ligand interactions formed by distinct ligands when they are in their correct poses, as compared to when they are in randomly selected poses. To predict binding affinities, poses are predicted for the known binders using ComBind, and then the candidate molecule is scored according to the ComBind score w.r.t the selected poses.

Predicting poses for known binders

First, see instructuctions for software installation at the bottom of this page.

Running ComBind can be broken into several components: data curation, data preparation (including docking), featurization of docked poses, and the ComBind scoring itself.

Note that if you already have docked poses for your molecules of interest, you can proceed to the featurization step. If you are knowledgable about your target protein, you may well be able to get better docking results by manually preparing the data than would be obtained using the automated procedure implemented here.

Curation of raw data

To produce poses for a particular protein, you'll need to provide a 3D structure of the target protein and chemical structures of ligands to dock.

These raw inputs need to be properly stored so that the rest of the pipeline can recognize them.

The structure(s) should be stored in a directory structures/raw. Each structure should be split into two files NAME_prot.mae and NAME_lig.mae containing only the protein and only the ligand, respectively.

If you'd prefer to prepare your structures yourself, save your prepared files to structures/proteins and structures/ligands. Moreover, you could even just begin with a Glide docking grid which you prepared yourself by placing it in docking/grids.

Ligands should be specified in a csv file with a header line containing at least the entries "ID" and "SMILES", specifying the ligand name and the ligand chemical structure.

Data preparation and docking

Use the following command, to prepare the structural data using Schrodinger's prepwizard, align the structures to each other, and produce a docking grid.

combind structprep

In parallel, you can prepare the ligand data using the following command. By default, the ligands will be written to seperate files (one ligand per file). You can specify the --multiplex flag to write all of the ligands to the same file.

combind ligprep ligands.csv

Once the docking grid and ligand data have been prepared, you can run the docking. The arguments to the dock command are a list of ligand files to be docked. By default, the docking grid is the alphabetically first grid present in structures/grids; use the --grid option to specify a different grid.

combind dock ligands/*/*.maegz

Featurization

Note that this is the

combind featurize features docking/*/*_pv.maegz

Pose prediction with ComBind

combind pose-prediction features poses.csv

ComBind virtual screening

To run ComBindVS, first use ComBind to

Installation

Start by cloning this git repository (likely into your home directory).

ComBind requires access to Glide along with several other Schrodinger tools and the Schrodinger Python API.

The Schrodinger suite of tools can be accessed on Sherlock by running ml chemistry schrodinger. This will add many of the Schrodinger tools to your path and sets the SCHRODINGER environmental variable. (Some tools are not added to your path and you'll need to write out $SCHRODINGER/tool.) After running this you should be able to run Glide by typing glide in the command line.

You can only access the Schrodinger Python API using their interpretter. Creating a virtual environment that makes their interpretter the default python interpretter is the simplest way to do this. To create the environment and upgrade the relevant packages run the following:

cd
$SCHRODINGER/run schrodinger_virtualenv.py schrodinger.ve
source schrodinger.ve/bin/activate
pip install --upgrade numpy sklearn scipy pandas

cd combind
ln -s  ~/schrodinger.ve/bin/activate schrodinger_activate

This last line is just there to provide a standardized way to access the activation script.

Run source schrodinger_activate to activate the environment in the future, you'll need to do this everytime before running ComBind. This is included in the setup_sherlock script; you can source the script by running source setup_sherlock.

Owner
Dror Lab
Ron Dror's computational biology laboratory at Stanford University
Dror Lab
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022