A Python module for the generation and training of an entry-level feedforward neural network.

Overview

ff-neural-network

A Python module for the generation and training of an entry-level feedforward neural network.

This repository serves as a repurposing of a 2019 project I did as an initiation into machine learning.

Usage

Creating a network:

network = Network(layer_sizes, bias_value)
  • layer_sizes: Number of neurons in each layer. Ex: [2, 5, 1] will generate a network that can be visualized as such:
  • bias_value: Value of the bias nodes (standardized at 1):

Bias nodes are added to a feed-forward neural network to help facilitate learning patterns. They function like an input node that always produces a value of 1.0 or other constant.

network.randomize()
  • Initializes the weights between all neurons with a random value.

network.train(input_data, target_data, learning_rate)
  • input_data : The input data, a good approach is to have it normalized into a proper range.

  • target_data : The data that the model learns from.

  • learning_rate : Controls how quickly or slowly the network model learns the problem.

Example

For an (output = X) pattern learning data:

X Y Target
0 1 0
1 0 1
1 1 1

Which should lead to:

X Y Output
0 0 ~0
from network import Network
from data_set import DataSet

# Initializing a network with a 2-2-1 structure
network = Network([2, 2, 1], 1.0)

# Randomizing initial weights between all neurons
network.randomize()

# Initializing data_set with input and output training data
inputs = [[0, 1], [1, 0], [1, 1]]
outputs = [[0], [1], [1]]
data_set = DataSet(inputs, outputs)

# Training the network for 10000 intervals
for _ in  range(10000):
	for index in  range(0, data_set.get_size()):
		network.train(data_set.get_input(index),data_set.get_target(index), 1.0)

# Printing output prediction for input = [0, 0]
print(network.calculate_outputs([0, 0]))

We get :

output : [0.0023672395614975253]
Owner
Riadh
Riadh
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022