Convert dog pictures into various painting styles. Try LimnPet

Overview

Logo

LimnPet

Cartoon stylization service project

Try our service »

Home page · Team notion · Members

목차
  1. 프로젝트 소개
  2. 구현 기능
  3. 사용 방법
  4. 서비스 시연 영상
  5. 로드맵
  6. 기여하기
  7. 연락처
  8. 참고 자료 및 코드 출처

About the Project



LimnPet은 커스텀 굿즈 제작 과정 간 따로 그림 서비스를 받아야 하는 불편함을 해소하기 위한
GAN 기반 반려견 그림 자동 생성 및 저장/공유 서비스입니다.



최근 성장하는 반려동물 시장과 반려동물을 가족 구성원으로 인식하고 감정을 가진 하나의 인격체로 대우하는 현상인 '펫 휴머나이제이션' 트렌드가 확산되고 있습니다. 따라서 개성을 중요하게 생각하는 MZ세대의 반려인은 반려동물 옷이나 액세서리를 통해 일명 ‘펫 부심’을 드러내려 합니다.

만약 고객이 반려견 사진을 원본 그대로 이용하지 않고, 캐릭터화한 반려견 그림이나 초상화를 이용하여 커스텀 굿즈 제작을 의뢰하기 위해서는 상품 제작과는 별개로 그림을 그려주는 서비스를 받아야 합니다.

하지만 고객의 입장에서 이러한 과정은 매우 번거롭고 비용도 많이 들 수 있다는 단점이 존재합니다.




Here's Insight 😊

  • 굿즈 제작을 위한 그림 서비스를 전문가의 수작업이 필요하지 않도록 자동화합니다.
  • 생성된 이미지를 기반으로 반려견 커스텀 굿즈(의류, 휴대폰 악세서리, 생활용품, 기타 등등)를 제작할 수 있도록 관련 업체와 사용자간 의사소통 채널을 형성합니다.
  • 이원화된 서비스 제공으로 인한 고객의 불편함을 감소시키고 굿즈 제작에 대한 접근성을 높일 수 있습니다.



더 자세한 프로젝트 소개와 문제 정의는 » Team notion 에서..



Goals of LimnPet Project


  • 이제는 가족의 구성원인 나의 반려동물만을 위한 카툰/그림 형식의 캐릭터 생성
  • 높은 비용과 오랜 제작기간이 필요한 수작업 반려동물 굿즈의 문제점을 해결
    • 전문가의 작업이 필요했던 반려동물 캐릭터화 또는 그림을 자동하여 비용과 시간을 절약
    • 생성된 이미지를 커스터마이징 굿즈 제작 업체에 제공하여 손쉽게 나만의 굿즈 구매
  • 반려동물과 커스터마이징 업체 중개를 통해 반려동물 관련 새로운 시장 및 문화를 형성



Used Tech stacks & Tools


Python html5 css3 Javascript jQuery
Selenium OpenCV Numpy Tensorflow Pytorch
Notion GitHub Microsoft PowerPoint adobe photoshop google drive
diagrams google colab Visual Studio Code
Addthis Disqus Bootstrap Flask Pythonanywhere freenom



Team members



김한주

김민지

성연재

송종호

정영훈




Implementation Features

Key Features

반려견 사진 업로드 또는 촬영 및 원하는 스타일 선택
학습된 모델을 통해 사진을 그림으로 변환
변환된 이미지 화면 표시 및 저장/공유 여부 확인
사용자 요청에 따른 이미지 저장/공유 혹은 화면 초기화
이미지 변환에 대한 사용자 반응 및 피드백 수집을 위한 댓글 페이지 제공
변환 이미지를 활용해 굿즈를 제작할 수 있는 업체 목록 표시
사용자가 선택한 업체 페이지로 이동


Additional Features

⊕ 사진 전체가 아닌 반려견 영역만 따로 추출하여 이미지 변환
⊕ 저화질 이미지 화질 개선
⊕ 글로벌 웹페이지 사이트 지원(Korean, English, Japanese, Spanish, Chinese)





How to use

1. 홈페이지 접속 방법
   1️⃣ Service 페이지 접속
   2️⃣ 스타일 선택 및 이미지 업로드
   3️⃣ Draw picture 버튼 클릭 또는 Improve resolution 버튼 클릭
   4️⃣ 출력/결과 이미지 저장
   5️⃣ 굿즈 사이트에서 주문 의뢰


2. 로컬 서버 실행 방법
   1️⃣ app.py 파일 실행
   2️⃣ localhost 주소로 접속
   3️⃣ 위의 과정과 동일




Service Demonstration Video


사진을 클릭해주세요





Roadmap

1st. iteration

  • 데이터셋 수집 및 CartoonGAN 모델 학습

  • CartoonGAN 모델을 이용하여 반려견 사진을 Cartoon화

  • return 이미지를 웹에 post

  • 소셜 네트워크 기능 추가(댓글 기능, SNS 공유기능)

  • 웹 배포



2st. iteration

  • segmantation 모델을 추가. 이미지에서 반려견만을 추출하여 Cartoon화

  • 웹 페이지 UI 추가 및 개선

  • 굿즈 제작 회사 사이트 추가

  • 굿즈 제작 사업자 정보 제공, 사진을 굿즈 사업자에게 전달


3st. iteration

  • Plan1) ReactNative를 이용한 앱 개발

  • Plan2) PWA를 이용한 앱 개발

  • 앱 마켓 출시 준비 (Google Play)

  • 앱 Open testing release 대기


TODO list in the near future:

  • 이미지 분할 기능 분리

    • 사용자가 직접 배경을 미리 제거한 사진을 그대로 이용할 수 있도록 해당 기능 분리

    • 기능 분할 시, 아래와 같은 이점이 존재

      • 분할 모델이 반려견을 제대로 인식하지 못한 경우에 대한 결과 방지
      • 사용자가 배경을 포함한 이미지를 변환하길 원하는 경우에 대한 선택권 제공
  • 이미지 변환과 해상도 개선 기능 통합

    • 저화질의 이미지가 필요한 경우는 존재하지 않음

    • 현 프로젝트에서는 서버 자원 문제로 해당 기능들을 분할했으나, 실제로는 통합이 필요

  • cartoonGAN 모델 성능 평가 및 개선

    • 충분하지 못한 학습으로 인해 이미지 일부만 변환되는 결과가 존재, 학습 횟수를 늘려 모델의 안정성 확보 필요

    • 현 프로젝트에서는 객관적인 모델 평가 지표에 대한 성능 평가가 이루어지지 않았으므로, 최근 GAN 모델의 평가 지표 관련 연구를 참고해 객관적인 평가 필요

  • 커뮤니티 및 갤러리 기능 추가

    • 사용자들이 저장한 결과 이미지들을 타 플랫폼이 아닌 웹 페이지 내에서 서로 공유할 수 있도록 커뮤니티 및 갤러리 기능을 추가

    • 사용자 잔존율 향상 기대

  • 반려동물 범위 확장

    • 고양이, 앵무새 등 다양한 반려동물에 대해 서비스 범위 확대
  • 굿즈샵들과의 연계를 통한 거래 중개 역할 강화

    • 각 업체와의 연계를 통해 범위를 확장시켜, 단순 목록 제공이 아닌 굿즈 제작 및 결제까지 페이지 내에서 수행할 수 있도록 웹 페이지 개선

    • 업체별 리뷰 및 평점 기능을 구현해 사용자와 굿즈 업체 간 의사소통 채널 형성 기반 마련

  • 부가 서비스 제공

    • 아래 예시와 같은 다양한 부가 서비스 추가 제공
      • 그림 이모티콘화
      • 유명 작가 및 굿즈샵과의 연계를 통한 자체 제작 굿즈 판매
      • 사용자가 직접 자신의 반려견을 이용한 굿즈를 만들어 거래





Contributing

이 프로젝트의 서비스 모델을 개선할 수 있는 제안이 있다면, repo를 전환하고 pull 요청을 해주세요.
또한 Issues 에서 "enhancement" 태그로 간단히 issue를 열어보고 기능 추가를 해보실 수 있습니다.
이 프로젝트에 별을 주는 것도 잊지 마세요. 감사합니다!


  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request





Contact

Team e-mail: [email protected]

Members's e-mail

Project Link: Github, Notion





Acknowledgments

(back to top)

Owner
LiJell
University of Colorado at Boulder [email protected]
LiJell
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022