Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Related tags

Deep Learningpidinet
Overview

Pixel Difference Convolution

This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo Su*, Wenzhe Liu*, Zitong Yu, Dewen Hu, Qing Liao, Qi Tian, Matti Pietikäinen and Li Liu** (* Authors have equal contributions, ** Corresponding author). [arXiv]

The writing style of this code is based on Dynamic Group Convolution.

Running environment

Training: Pytorch 1.9 with cuda 10.1 and cudnn 7.5 in an Ubuntu 18.04 system
Evaluation: Matlab 2019a

Ealier versions may also work~ :)

Dataset

We use the links in RCF Repository. The augmented BSDS500, PASCAL VOC, and NYUD datasets can be downloaded with:

wget http://mftp.mmcheng.net/liuyun/rcf/data/HED-BSDS.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/PASCAL.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/NYUD.tar.gz

To create BSDS dataset, please follow:

  1. create a folder /path/to/BSDS500,
  2. extract HED-BSDS.tar.gz to /path/to/BSDS500/HED-BSDS,
  3. extract PASCAL.tar.gz to /path/to/BSDS500/PASCAL,
  4. if you want to evaluate on BSDS500 val set, the val images can be downloaded from this link, please extract it to /path/to/BSDS500/HED-BSDS/val,
  5. cp the *.lst files in data/BSDS500/HED-BSDS to /path/to/BSDS500/HED-BSDS/, cp the *.lst files in data/BSDS500 to /path/to/BSDS500/.

To create NYUD dataset, please follow:

  1. create a folder /path/to/NYUD,
  2. extract NYUD.tar.gz to /path/to/NYUD,
  3. cp the *.lst files in data/NYUD to /path/to/NYUD/.

Training, and Generating edge maps

Here we provide the scripts for training the models appeared in the paper. For example, we refer to the PiDiNet model in Table 5 in the paper as table5_pidinet.

table5_pidinet

# train, the checkpoints will be save in /path/to/table5_pidinet/save_models/ during training
python main.py --model pidinet --config carv4 --sa --dil --resume --iter-size 24 -j 4 --gpu 0 --epochs 20 --lr 0.005 --lr-type multistep --lr-steps 10-16 --wd 1e-4 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS

# generating edge maps using the original model
python main.py --model pidinet --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.tar

# generating edge maps using the converted model, it should output the same results just like using the original model
# the process will convert pidinet to vanilla cnn, using the saved checkpoint
python main.py --model pidinet_converted --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.tar --evaluate-converted

# test FPS on GPU
python throughput.py --model pidinet_converted --config carv4 --sa --dil -j 1 --gpu 0 --datadir /path/to/BSDS500 --dataset BSDS

It is similar for other models, please see detailed scripts in scripts.sh.

The performance of some of the models are listed below (click the items to download the checkpoints and training logs). FPS metrics are tested on a NVIDIA RTX 2080 Ti, showing slightly faster than that recorded in the paper (you probably get different FPS records in different runs, but they will not vary too much):

Model ODS OIS FPS Training logs
table5_baseline 0.798 0.816 101 log
table5_pidinet 0.807 0.823 96 log, running log
table5_pidinet-l 0.800 0.815 135 log
table5_pidinet-small 0.798 0.814 161 log
table5_pidinet-small-l 0.793 0.809 225 log
table5_pidinet-tiny 0.789 0.806 182 log
table5_pidinet-tiny-l 0.787 0.804 253 log
table6_pidinet 0.733 0.747 66 log, running_log
table7_pidinet 0.818 0.824 17 log, running_log

Evaluation

The matlab code used for evaluation in our experiments can be downloaded in matlab code for evaluation.

Possible steps:

  1. extract the downloaded file to /path/to/edge_eval_matlab,
  2. change the first few lines (path settings) in eval_bsds.m, eval_nyud.m, eval_multicue.m for evaluating the three datasets respectively,
  3. in a terminal, open Matlab like
matlab -nosplash -nodisplay -nodesktop

# after entering the Matlab environment, 
>>> eval_bsds
  1. you could change the number of works in parpool in /path/to/edge_eval_matlab/toolbox.badacost.public/matlab/fevalDistr.m in line 100. The default value is 16.

For evaluating NYUD, following RCF, we increase the localization tolerance from 0.0075 to 0.011. The Matlab code is based on the following links:

PR curves

Please follow plot-edge-pr-curves, files for plotting pr curves of PiDiNet are provided in pidinet_pr_curves.

Generating edge maps for your own images

python main.py --model pidinet_converted --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/savedir --datadir /path/to/custom_images --dataset Custom --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.tar --evaluate-converted

The results of our model look like this. The top image is the messy office table, the bottom image is the peaceful Saimaa lake in southeast of Finland.
Owner
Alex
A researcher in Oulu, Finland. Working on model compression and acceleration on Computer Vision.
Alex
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022