Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Related tags

Deep Learningvis2mesh
Overview

Vis2Mesh

This is the offical repository of the paper:

Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility

https://arxiv.org/abs/2108.08378

@misc{song2021vis2mesh,
      title={Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility}, 
      author={Shuang Song and Zhaopeng Cui and Rongjun Qin},
      year={2021},
      eprint={2108.08378},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Updates
  • 2021/9/6: Intialize all in one project. Only this version only supports inferencing with our pre-trained weights. We will release Dockerfile to relief deploy efforts.
TODO
  • Ground truth generation and network training.
  • Evaluation scripts

Build With Docker (Recommended)

Install nvidia-docker2
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
Build docker image

docker build . -t vis2mesh

Build on Ubuntu

Please create a conda environment with pytorch and check out our setup script:

./setup_tools.sh

Usage

Get pretrained weights and examples
pip install gdown
./checkpoints/get_pretrained.sh
./example/get_example.sh
Run example

The main command for surface reconstruction, the result will be copied as $(CLOUDFILE)_vis2mesh.ply.

python inference.py example/example1.ply --cam cam0

We suggested to use docker, either in interactive mode or single shot mode.

xhost +
name=vis2mesh
# Run in interactive mode
docker run -it \
--mount type=bind,source="$PWD/checkpoints",target=/workspace/checkpoints \
--mount type=bind,source="$PWD/example",target=/workspace/example \
--privileged \
--net=host \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e DISPLAY=unix$DISPLAY \
-v $XAUTH:/root/.Xauthority \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
--device=/dev/dri \
--gpus all $name

cd /workspace
python inference.py example/example1.ply --cam cam0

# Run with single shot call
docker run \
--mount type=bind,source="$PWD/checkpoints",target=/workspace/checkpoints \
--mount type=bind,source="$PWD/example",target=/workspace/example \
--privileged \
--net=host \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e DISPLAY=unix$DISPLAY \
-v $XAUTH:/root/.Xauthority \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
--device=/dev/dri \
--gpus all $name \
/workspace/inference.py example/example1.ply --cam cam0
Run with Customize Views

python inference.py example/example1.ply Run the command without --cam flag, you can add virtual views interactively with the following GUI. Your views will be recorded in example/example1.ply_WORK/cam*.json.

Main View

Navigate in 3D viewer and click key [Space] to record current view. Click key [Q] to close the window and continue meshing process.

Record Virtual Views

Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022