Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Overview

Image Super-Resolution via Iterative Refinement

Paper | Project

Brief

This is a unoffical implementation about Image Super-Resolution via Iterative Refinement(SR3) by Pytorch.

There are some implement details with paper description, which maybe different with actual SR3 structure due to details missing.

  • We used the ResNet block and channel concatenation style like vanilla DDPM.
  • We used the attention mechanism in low resolution feature(16×16) like vanilla DDPM.
  • We encoding the $\gamma$ as FilM strcutrue did in WaveGrad, and embedding it without affine transformation.

Status

Conditional generation(super resolution)

  • 16×16 -> 128×128 on FFHQ-CelebaHQ
  • 64×64 -> 512×512 on FFHQ-CelebaHQ

Unconditional generation

  • 128×128 face generation on FFHQ
  • 1024×1024 face generation by a cascade of 3 models

Training Step

  • log / logger
  • metrics evaluation
  • multi-gpu support
  • resume training / pretrained model

Results

We set the maximum reverse steps budget to 2000 now.

Tasks/Metrics SSIM(+) PSNR(+) FID(-) IS(+)
16×16 -> 128×128 0.675 23.26 - -
64×64 -> 512×512 - -
128×128 - -
1024×1024 - -
show show show
show show show

Usage

Pretrained Model

This paper is based on "Denoising Diffusion Probabilistic Models", and we build both DDPM/SR3 network structure, which use timesteps/gama as model embedding input, respectively. In our experiments, SR3 model can achieve better visual results with same reverse steps and learning rate. You can select the json files with annotated suffix names to train different model.

Tasks Google Drive
16×16 -> 128×128 on FFHQ-CelebaHQ SR3
128×128 face generation on FFHQ SR3
# Download the pretrain model and edit [sr|sample]_[ddpm|sr3]_[resolution option].json about "resume_state":
"resume_state": [your pretrain model path]

We have not trained the model until converged for time reason, which means there are a lot room to optimization.

Data Prepare

New Start

If you didn't have the data, you can prepare it by following steps:

Download the dataset and prepare it in LMDB or PNG format using script.

# Resize to get 16×16 LR_IMGS and 128×128 HR_IMGS, then prepare 128×128 Fake SR_IMGS by bicubic interpolation
python prepare.py  --path [dataset root]  --out [output root] --size 16,128 -l

then you need to change the datasets config to your data path and image resolution:

"datasets": {
    "train": {
        "dataroot": "dataset/ffhq_16_128", // [output root] in prepare.py script
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "lmdb", //lmdb or img, path of img files
    },
    "val": {
        "dataroot": "dataset/celebahq_16_128", // [output root] in prepare.py script
    }
},

Own Data

You also can use your image data by following steps.

At first, you should organize images layout like this:

# set the high/low resolution images, bicubic interpolation images path
dataset/celebahq_16_128/
├── hr_128
├── lr_16
└── sr_16_128

then you need to change the dataset config to your data path and image resolution:

"datasets": {
    "train|val": {
        "dataroot": "dataset/celebahq_16_128",
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "img", //lmdb or img, path of img files
    }
},

Training/Resume Training

# Use sr.py and sample.py to train the super resolution task and unconditional generation task, respectively.
# Edit json files to adjust network structure and hyperparameters
python sr.py -p train -c config/sr_sr3.json

Test/Evaluation

# Edit json to add pretrain model path and run the evaluation 
python sr.py -p val -c config/sr_sr3.json

Evaluation Alone

# Quantitative evaluation using SSIM/PSNR metrics on given dataset root
python eval.py -p [dataset root]

Acknowledge

Our work is based on the following theoretical works:

and we are benefit a lot from following projects:

Owner
LiangWei Jiang
LiangWei Jiang
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022