PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

Overview

PASSL

Introduction

PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to accelerate research cycle in self-supervised learning: from designing a new self-supervised task to evaluating the learned representations.

  • Reproducible implementation of SOTA in Self-Supervision: Existing SOTA in Self-Supervision are implemented - SimCLR, MoCo(v1),MoCo(v2), MoCo-BYOL, CLIP. BYOL is coming soon. Also supports supervised trainings.
  • Modular: Easy to build new tasks and reuse the existing components from other tasks (Trainer, models and heads, data transforms, etc.).

Installation

Implemented Models

Benchmark Linear Image Classification on ImageNet-1K

epochs official results passl results Backbone Model
MoCo 200 60.6 60.64 ResNet-50 download
SimCLR 100 64.5 65.3 ResNet-50 download
MoCo v2 200 67.7 67.72 ResNet-50 download
MoCo-BYOL 300 71.56 72.10 ResNet-50 download
BYOL 300 72.50 71.62 ResNet-50 download

Getting Started

Please see GETTING_STARTED.md for the basic usage of PASSL.

Tutorials

Comments
  • MLP-Mixer: An all-MLP Architecture for Vision

    MLP-Mixer: An all-MLP Architecture for Vision

    readme文件里的两个模型的TOP1 是不是写反了?模型大的准确度比模型小的准确度小一些?

    Arch | Weight | Top-1 Acc | Top-5 Acc | Crop ratio | # Params -- | -- | -- | -- | -- | -- mlp_mixer_b16_224 | pretrain 1k | 76.60 | 92.23 | 0.875 | 60.0M mlp_mixer_l16_224 | pretrain 1k | 72.06 | 87.67 | 0.875 | 208.2M

    opened by gaorui999 3
  • 我很关注图像分类的自监督进展

    我很关注图像分类的自监督进展

    小弟想问问,对于图像分类的自监督,目前是什么进展呢?比如猫狗分类这种典型的二分类准确率如何?imagenet1k分类准确率如何?PASSL里面的关于图像分类的自监督算法或者模型,有哪些?能给个例子,让我知道如何使用吗?目前看到PASSLissues才1条,文档完全没看到.方便加个微信或者QQ聊几句吗?小弟对于图像分类的自监督高度重视.还有一个疑问,关于图像分类的自监督模型,是不是我给一堆图片,模型运行后,就会把图片归类呢?我需不需要给出类别的数量呢?说白了,我想知道图像分类的自监督的一个使用流程.现在都1.0了,该有点用处了吧.如果一个模型运行后,图像就分好类了,归纳为N类,我有什么办法判断分类的正确性呢?这方面有算法吗? 提了很多问题,跪求每个问题都回答一下,谢谢大佬.

    opened by yuwoyizhan 2
  • Unintended behavior in clip_logit_scale

    Unintended behavior in clip_logit_scale

    https://github.com/PaddlePaddle/PASSL/blob/83c49e6a5ba3444cee7f054122559d7759152764/passl/modeling/backbones/clip.py#L317

    check this issue for reference https://github.com/PaddlePaddle/Paddle/issues/43710

    Suggested approach (with non-public API)

    logit_scale_buffer = self.logit_scale.clip(-4.6, 4.6)
    logit_scale_buffer._share_buffer_to(self.logit_scale)
    
    opened by minogame 1
  • 建议

    建议

    1.passl很多文字都是英文的,包括快速使用等文档,希望可以提供中文文档. 2.希望知道图像分类自监督学习的技术研究目前到达什么程度了.比如猫狗这种二分类准确率如何,imagenet准确率如何,使用passl进行图像分类,需要给类别总数量吗? 3.能加个QQ或者微信聊几句吗?有些疑问,拜托了,大佬. QQ:1226194560 微信:18820785964

    opened by yuwoyizhan 1
  • fix bug of mixup for DeiT

    fix bug of mixup for DeiT

    DeiT/B-16 pretrained on ImageNet1K:

    [01/21 02:54:46] passl.engine.trainer INFO: Validate Epoch [290] acc1 (81.336), acc5 (95.544)
    [01/21 03:02:31] passl.engine.trainer INFO: Validate Epoch [291] acc1 (81.328), acc5 (95.580)
    [01/21 03:10:20] passl.engine.trainer INFO: Validate Epoch [292] acc1 (81.390), acc5 (95.608)
    [01/21 03:18:10] passl.engine.trainer INFO: Validate Epoch [293] acc1 (81.484), acc5 (95.636)
    [01/21 03:26:00] passl.engine.trainer INFO: Validate Epoch [294] acc1 (81.452), acc5 (95.600)
    [01/21 03:33:52] passl.engine.trainer INFO: Validate Epoch [295] acc1 (81.354), acc5 (95.528)
    [01/21 03:41:38] passl.engine.trainer INFO: Validate Epoch [296] acc1 (81.338), acc5 (95.562)
    [01/21 03:49:25] passl.engine.trainer INFO: Validate Epoch [297] acc1 (81.344), acc5 (95.542)
    [01/21 03:57:15] passl.engine.trainer INFO: Validate Epoch [298] acc1 (81.476), acc5 (95.550)
    [01/21 04:05:03] passl.engine.trainer INFO: Validate Epoch [299] acc1 (81.476), acc5 (95.572)
    [01/21 04:12:51] passl.engine.trainer INFO: Validate Epoch [300] acc1 (81.386), acc5 (95.536)
    
    opened by GuoxiaWang 1
  • BYOL的预训练中好像使用了gt_label?

    BYOL的预训练中好像使用了gt_label?

    • 在byol的config 中设置了 num_classes=1000: https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/configs/byol/byol_r50_IM.yaml#L34
    • 在model中设置了self.classifier = nn.Linear(embedding_dim, num_classes),并且forward中将classif_out和label一起传给了head

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/architectures/BYOL.py#L263

    • 在L2 Head中将对比loss和有监督的CE loss加在了一起返回

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/heads/l2_head.py#L43

    opened by youqingxiaozhua 0
  • [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    PR types

    New features

    PR changes

    APIs

    Describe

    • Task: https://github.com/PaddlePaddle/Paddle/issues/41482
    • 添加 passl.model.architectures.dino

    Peformance

    | Model | Official | Passl | | ---- | ---- | ---- | | DINO | 74.0 | 73.6 |

    • [x] 预训练和linear probe代码
    • [ ] 预训练和linear probe权重
    • [ ] 文档
    • [ ] TIPC
    opened by fuqianya 0
Releases(v1.0.0)
  • v1.0.0(Feb 24, 2022)

    • 新增 XCiT 视觉 Transformer 模型 xcit_nano_12_p8_224 蒸馏模型训练指标对齐,感谢 @BrilliantYuKaimin 的高质量贡献 🎉 🎉 🎉

    PASSL飞桨自监督领域核心学习库,提供大量高精度的视觉自监督模型、视觉 Transformer 模型,并支持超大视觉模型分布式训练功能,旨在提升飞桨开发者在自监督领域建模效率,并提供基于飞桨框架2.2的超大视觉模型领域最佳实践

    Source code(tar.gz)
    Source code(zip)
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022