COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

Related tags

Deep Learningcopa-sse
Overview

COPA-SSE

Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning.

Crowdsourcing protocol

COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset, a variant of the Choice of Plausible Alternatives (COPA) benchmark. The explanations are formatted as a set of triple-like common sense statements with ConceptNet relations but freely written concepts.

Data format

dev-explained.jsonl and test-explained.jsonl each contain Balanced COPA samples with added explanations in .jsonl format. The question ids match the original questions of the development and test set, respectively.

Each entry contains:

  • the original question (matching format and ids)
  • human-explanations: a list of explanations each containing:
    • expl-id: the explanation id
    • text: the explanation in plain text (full sentences)
    • worker-id: anonymized worker id (the author of the explanation)
    • worker-avg: the average score the author got for their explanations
    • all-ratings: all collected ratings for the explanation
    • filtered-ratings: ratings excluding those that failed the control
    • triples: the triple-form explanation (a list of ConceptNet-like triples)

Example entry:

id: 1, 
asks-for: cause, 
most-plausible-alternative: 1,
p: "My body cast a shadow over the grass.", 
a1: "The sun was rising.", 
a2: "The grass was cut.", 
human-explanations: [
    {expl-id: f4d9b407-681b-4340-9be1-ac044f1c2230, 
     text: "Sunrise causes casted shadows.", 
     worker-id: 3a71407b-9431-49f9-b3ca-1641f7c05f3b, 
     worker-avg: 3.5832864694635025, 
     all-ratings: [1, 3, 3, 4, 3], 
     filtered-ratings: [3, 3, 4, 3], 
     filtered-avg-rating: 3.25, 
     triples: [["sunrise", "Causes", "casted shadows"]]
     }, ...]

Aggregated versions

graphs.pkl contains aggregated versions of the triples for each question in a dictionary format with COPA question ids as the key.

Each entry contains a list of edges, each being a tuple of (u, v, {'rel': relation, 'weight': weight}). Similar nodes were connected or merged with relatedto, depending on the cosine similarity between their SentenceTransformer embeddings. The weight is the average score of the explanation the edge originated from (summed if multiple), or 1.0 if the edge was automatically generated.

  • Note: not all graphs are (weakly) connected.

Example entry:

1: [('sunrise', 'casted_shadows', {'rel': 'causes', 'weight': 3.25}),
  ('sunrise', 'sun', {'rel': 'relatedto', 'weight': 1.0}),
  ('casted_shadows', 'the_shadow', {'rel': 'relatedto', 'weight': 1.0}),
  ('sun_rising', 'bringing_light', {'rel': 'hasproperty', 'weight': 4.25}),
  ('sun_rising', 'a_sun_raising', {'rel': 'relatedto', 'weight': 1.0}),
 ...
]

Citation

Thank you for your interest in our dataset! If you use it in your research, please cite:

@misc{brassard2022copasse,
    title={COPA-SSE: Semi-structured Explanations for Commonsense Reasoning},
    author={Ana Brassard and Benjamin Heinzerling and Pride Kavumba and Kentaro Inui},
    year={2022},
    eprint={2201.06777},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Ana Brassard
Ana Brassard
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022