[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

Overview

NYU-VPR

This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences.

Here is a graphical user interface (GUI) for using VPR methods on custom datasets: https://github.com/ai4ce/VPR-GUI-Tool

Requirements

To install requirements:

pip install -r requirements.txt

Data Processing

1. Image Anonymization

To install mseg-api:

cd segmentation
cd mseg-api
pip install -e .

Make sure that you can run python -c "import mseg" in python.

To install mseg-semantic:

cd segmentation
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

cd ../mseg-semantic
pip install -e .

Make sure that you can run python -c "import mseg_semantic" in python.

Finally:

input_file=/path/to/my/directory
model_name=mseg-3m
model_path=mseg_semantic/mseg-3m.pth
config=mseg_semantic/config/test/default_config_360_ms.yaml
python -u mseg_semantic/tool/universal_demo.py --config=${config} model_name {model_name} model_path ${model_path} input_file ${input_file}

2. Image Filtration

Inside the process folder, use whiteFilter.py to filter images with white pixel percentage.

Methods

1. VLAD+SURF

Modify vlad_codebook_generation.py line 157 - 170 to fit the dataset.

cd test/vlad
python vlad_codebook_generation.py
python query_image_closest_image_generation.py

*Notice: the processing may take a few hours.

2. VLAD+SuperPoint

cd test/vlad_SP
python main.py
python find_closest.py

*Notice: the processing may take a few hours.

3. NetVLAD

4. PoseNet

Copy the train_image_paths.txt and test_image_paths.txt to test/posenet.

Obtain the latitude and longtitude of training images and convert them to normalized Universal Transverse Mercator (UTM) coordinates.

cd test/posenet
python getGPS.py
python mean.py

Start training. This may take several hours. Suggestion: use slurm to run the process.

python train.py --image_path path_to_train_images/ --metadata_path trainNorm.txt

Generate the input file for testing from test_image_paths.txt.

python gen_test_txt.py

Start testing.

python single_test.py --image_path path_to_test_images/ --metadata_path test.txt --weights_path models_trainNorm/best_net.pth

The predicted normalized UTM coordinates of test images is in the image_name.txt. Match the test images with the training images based on their location.

python match.py

The matching result is in the match.txt.

5. DBoW

Copy the train_image_paths.txt and test_image_paths.txt to test/DBow3/utils. Copy and paste the content of test_image_paths.txt at the end of train_image_paths.txt and save the text file as total_images_paths.txt.

Open test/DBow3/utils/demo_general.cpp file. Change the for loop range at line 117 and line 123. Both ranges are the range of lines in total_images_paths.txt. The first for loop range is the range of test images and the second range is the range of training images. To run with multi-thread, you may run the code multiple times with small ranges of test images where the sum of ranges equals to the number of lines in test_image_paths.txt.

Compile and run the code.

cd test/DBow3
cmake .
cd utils
make
./demo_general a b

The result of each test image and its top-5 matched training images is in the output.txt.

Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022